首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abs of the secretory Ig (SIg) system reinforce numerous innate defense mechanisms to protect the mucosal surfaces against microbial penetration. SIgs are generated by a unique cooperation between two distinct cell types: plasma cells that produce polymers of IgA or IgM (collectively called pIgs) and polymeric Ig receptor (pIgR)-expressing secretory epithelial cells that mediate export of the pIgs to the lumen. Apical delivery of SIgs occurs by cleavage of the pIgR to release its extracellular part as a pIg-bound secretory component, whereas free secretory components are derived from an unoccupied receptor. The joining chain (J chain) is crucial in pIg/SIg formation because it serves to polymerize Igs and endows them with a binding site for the pIgR. In this study, we show that the J chain from divergent tetrapods including mammals, birds, and amphibians efficiently induced polymerization of human IgA, whereas the J chain from nurse shark (a lower vertebrate) did not. Correctly assembled polymers showed high affinity to human pIgR. Sequence analysis of the J chain identified two regions, conserved only in tetrapods, which by mutational analysis were found essential for pIgA-pIgR complexing. Furthermore, we isolated and characterized pIgR from the amphibian Xenopus laevis and demonstrated that its pIg binding domain showed high affinity to human pIgA. These results showed that the functional site of interaction between pIgR, J chain and Ig H chains is conserved in these species and suggests that SIgs originated in an ancestor common to tetrapods.  相似文献   

2.
Transcytosis of polymeric immunoglobulin A (pIgA) across epithelial cells is mediated by the polymeric immunoglobulin receptor (pIgR). Binding of pIgA to pIgR stimulates transcytosis of the pIgA-pIgR complex via a signal transduction pathway that is dependent on a protein tyrosine kinase (PTK) of the SRC family. Here we identify the PTK as p62yes. We demonstrate the specific physical and functional association of the pIgR with p62yes in rodent liver. Analysis of p62yes knockout mice revealed a dramatic reduction in the association of tyrosine kinase activity with the pIgR and in transcytosis of pIgA. We conclude that p62yes controls pIgA transcytosis in vivo.  相似文献   

3.
多聚免疫球蛋白受体(pIgR)在粘膜免疫中的重要功能   总被引:1,自引:0,他引:1  
多聚免疫球蛋白受体(pIgR)属于Ⅰ型跨膜糖蛋白,可与多聚免疫球蛋白A和多聚免疫球蛋白M特异性结合,通过穿胞转运,将它们从上皮细胞基底侧膜转运到顶膜,并最终分泌到外分泌液中去. 在此过程中,多聚免疫球蛋白受体的细胞外段被水解,释放出与多聚免疫球蛋白A或多聚免疫球蛋白M相结合的细胞外段(又称为分泌成分). 分泌成分是sIgA分子的重要组成部分,直接参与sIgA的粘膜防御功能,而且在被动粘膜免疫中也有重要作用. 多聚免疫球蛋白受体通过介导细胞内多聚免疫球蛋白的转运,可以在粘膜的腔面阻止病原体粘附,在上皮细胞内中和病毒,也可以将固有层内的抗原分泌出去. 因此,多聚免疫球蛋白受体的有效分泌是多聚免疫球蛋白发挥粘膜防御功能的必要条件. 但在某些情况下,该受体也可以介导微生物对上皮屏障的入侵. 多聚免疫球蛋白受体是高度 N -糖基化的,其分子中独特的糖链结构,可能与受体的穿胞转运、sIgA在粘膜的正确定位,以及抗原对上皮细胞的粘附有关. 多聚免疫球蛋白受体和分泌成分参与的多重分子机制,使它们在粘膜免疫中起着举足轻重的作用.  相似文献   

4.
Polymeric IgA (pIgA) is transcytosed by the pIgA receptor (pIgR) across mucosal epithelial cells. After transcytosis to the apical surface, the extracellular, ligand-binding portion of the pIgR is proteolytically cleaved. A missense mutation in human pIgR, A580V, is associated with IgA nephropathy and nasopharyngeal carcinoma. We report that this mutation reduces the rate of transcytosis of pIgR and pIgA, and seemingly the rate of pIgR cleavage. We propose that the defects in pIgR trafficking caused by the A580V mutation may underlie the pathogenesis of both diseases.  相似文献   

5.
Retromer is a multimeric protein complex that mediates intracellular receptor sorting. One of the roles of retromer is to promote transcytosis of the polymeric immunoglobulin receptor (pIgR) and its ligand polymeric immunoglobulin A (pIgA) in polarized epithelial cells. In Madin-Darby Canine Kidney (MDCK) cells, overexpression of Vps35, the retromer subunit key for cargo recognition, restores transcytosis to a pIgR mutant that is normally degraded. Here we show that pIgA transcytosis was not restored in these cells when treated with the specific phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Likewise, the decrease in pIgA transcytosis by wild-type pIgR seen upon PI3K inhibition was not reverted by Vps35 overexpression. PI3K inhibition reduced membrane association of sorting-nexins (SNX) 1 and 2, which constitute the retromer subcomplex involved in membrane deformation, while association of the Vps35-Vps26-Vps29 subcomplex, involved in cargo recognition, remained virtually unaffected. Colocalization between the two retromer subcomplexes was reduced upon the treatment. Whereas the interaction among the subunits of the Vps35-Vps26-Vps29 subcomplex remained unchanged, less Vps35 was found associated with pIgR upon PI3K inhibition. In addition, colocalization of internalized pIgA with subunits of both retromer subcomplexes throughout the transcytotic pathway was substantially reduced by LY294002 treatment. These data implicate PI3K in controlling retromer's role in pIgR-pIgA transcytosis.  相似文献   

6.
Protein delivery across polarized epithelia is controlled by receptor‐mediated transcytosis. Many studies have examined basolateral‐to‐apical trafficking of polymeric IgA (pIgA) by the polymeric immunoglobulin receptor (pIgR). Less is known about apical‐to‐basolateral transcytosis, the direction the neonatal Fc receptor (FcRn) transports maternal IgGs across intestinal epithelia. To compare apical‐to‐basolateral and basolateral‐to‐apical transcytosis, we co‐expressed FcRn and pIgR in Madin‐Darby canine kidney (MDCK) cells and used pulse‐chase experiments with confocal microscopy to examine transport of apically applied IgG Fcγ and basolaterally applied pIgA. Fcγ and pIgA trafficking routes were initially separate but intermixed at later chase times. Fcγ was first localized near the apical surface, but became more equally distributed across the cell, consistent with concomitant transcytosis and recycling. By contrast, pIgA transport was strongly unidirectional: pIgA shifted from near the basolateral surface to an apical location with increasing time. Some Fcγ and pIgA fluorescence colocalized in early (EEA1‐positive), recycling (Rab11a‐positive), and transferrin (Tf)‐positive common/basolateral recycling endosomes. Fcγ became more enriched in Tf‐positive endosomes with time, whereas pIgA was sorted from these compartments. Live‐cell imaging revealed that vesicles containing Fcγ or pIgA shared similar mobility characteristics and were equivalently affected by depolymerizing microtubules, indicating that both trafficking routes depended to roughly the same extent on intact microtubules.  相似文献   

7.
Polymeric immunoglobulin A (pIgA) transcytosis, mediated by the polymeric immunoglobulin receptor (pIgR), is a central component of mucosal immunity and a model for regulation of polarized epithelial membrane traffic. Binding of pIgA to pIgR stimulates transcytosis in a process requiring Yes, a Src family tyrosine kinase (SFK). We show that Yes directly phosphorylates EGF receptor (EGFR) on liver endosomes. Injection of pIgA into rats induced EGFR phosphorylation. Similarly, in MDCK cells, pIgA treatment significantly increased phosphorylation of EGFR on various sites, subsequently activating extracellular signal-regulated protein kinase (ERK). Furthermore, we find that the Rab11 effector Rab11-FIP5 is a substrate of ERK. Knocking down Yes or Rab11-FIP5, or inhibition of the Yes-EGFR-ERK cascade, decreased pIgA-pIgR transcytosis. Finally, we demonstrate that Rab11-FIP5 phosphorylation by ERK controls Rab11a endosome distribution and pIgA-pIgR transcytosis. Our results reveal a novel Yes-EGFR-ERK-FIP5 signalling network for regulation of pIgA-pIgR transcytosis.  相似文献   

8.
The expression of secretory component (SC), the epithelial receptor for polymeric Ig, was enhanced by the addition of human rIFN-gamma or rIL-4, as revealed by the binding of radiolabeled polymeric, J chain-containing IgA or anti-SC antisera to the human colonic adenocarcinoma epithelial cell line HT-29. In combination, these cytokines exhibited a synergistic effect, and the potentiating effect of IL-4 was inhibitable by polyclonal anti-IL-4 antisera. Because the binding of radiolabeled polymeric IgA (pIgA) to HT-29 cells was inhibited by unlabeled pIgA or a polyclonal anti-SC reagent, but not by IgG, monomeric IgA, or Fab alpha fragments, we conclude that the receptor involved in the increased binding of pIgA is indeed SC. These data suggest that the expression of SC on human epithelial cells and the subsequent binding of pIgA (produced in mucosal tissues and glands by subepithelial plasma cells) is regulated by lymphokines such as IL-4 and IFN-gamma that are presumably derived from T cells found in abundant numbers in these tissues. These findings demonstrate a novel pathway of interaction between T cell products and epithelial cells that may result in enhanced translocation of large amounts of locally produced pIgA through epithelial cells into external secretions.  相似文献   

9.
Binding and transport of polymeric Igs (pIgA and IgM) across epithelia is mediated by the polymeric Ig receptor (pIgR), which is expressed on the basolateral surface of secretory epithelial cells. Although an Fc receptor for IgA (FcalphaR) has been identified on myeloid cells and some cultured mesangial cells, the expression of an FcalphaR on epithelial cells has not been described. In this study, binding of IgA to a human epithelial line, HT-29/19A, with features of differentiated colonic epithelial cells, was examined. Radiolabeled monomeric IgA (mIgA) showed a dose-dependent, saturable, and cation-independent binding to confluent monolayers of HT-29/19A cells. Excess of unlabeled mIgA, but not IgG or IgM, competed for the mIgA binding, indicating that the binding was IgA isotype-specific and was not mediated by the pIgR. The lack of competition by asialoorosomucoid and the lack of requirement for divalent cations excluded the possibility that IgA binding to HT-29/19A cells was due to the asialoglycoprotein receptor or beta-1, 4-galactosyltransferase, previously described on HT-29 cells. Moreover, the FcalphaR (CD89) protein and message were undetectable in HT-29/19A cells. FACS analysis of IgA binding demonstrated two discrete populations of HT-29/19 cells, which bound different amounts of mIgA. IgA binding to other colon carcinoma cell lines was also demonstrated by FACS analysis, suggesting that an IgA receptor, distinct from the pIgR, asialoglycoprotein receptor, galactosyltransferase, and CD89 is constitutively expressed on cultured human enterocytes. The function of this novel IgA receptor in mucosal immunity remains to be elucidated.  相似文献   

10.
The lacrimal gland is responsible for tear production, and a major protein found in tears is secretory component (SC), the proteolytically cleaved fragment of the extracellular domain of the polymeric Ig receptor (pIgR), which is the receptor mediating the basal-to-apical transcytosis of polymeric immunoglobulins across epithelial cells. Immunofluorescent labeling of rabbit lacrimal gland acinar cells (LGACs) revealed that the small GTPase Rab3D, a regulated secretory vesicle marker, and the pIgR are colocalized in subapical membrane vesicles. In addition, the secretion of SC from primary cultures of LGACs was stimulated by the cholinergic agonist carbachol (CCH), and its release rate was very similar to that of other regulated secretory proteins in LGACs. In pull-down assays from resting LGACs, recombinant wild-type Rab3D (Rab3DWT) or the GDP-locked mutant Rab3DT36N both pulled down pIgR, but the GTP-locked mutant Rab3DQ81L did not. When the pull-down assays were performed in the presence of guanosine-5'-(gamma-thio)-triphosphate, GTP, or guanosine-5'-O-(2-thiodiphosphate), binding of Rab3DWT to pIgR was inhibited. In blot overlays, recombinant Rab3DWT bound to immunoprecipitated pIgR, suggesting that Rab3D and pIgR may interact directly. Adenovirus-mediated overexpression of mutant Rab3DT36N in LGACs inhibited CCH-stimulated SC release, and, in CCH-stimulated LGACs, pull down of pIgR with Rab3DWT and colocalization of pIgR with endogenous Rab3D were decreased relative to resting cells, suggesting that the pIgR-Rab3D interaction may be modulated by secretagogues. These data suggest that the novel localization of pIgR to the regulated secretory pathway of LGACs and its secretion therefrom may be affected by its novel interaction with Rab3D.  相似文献   

11.
The polymeric Ig receptor (pIgR) transcytoses its ligand, dimeric IgA (dIgA), from the basolateral to the apical surface of epithelial cells. Although the pIgR is constitutively transcytosed in the absence of ligand, binding of dIgA stimulates transcytosis of the pIgR. We recently reported that dIgA binding to the pIgR induces translocation of protein kinase C, production of inositol triphosphate, and elevation of intracellular free calcium. We now report that dIgA binding causes rapid, transient tyrosine phosphorylation of several proteins, including phosphatidyl inositol-specific phospholipase C-γl. Protein tyrosine kinase inhibitors or deletion of the last 30 amino acids of pIgR cytoplasmic tail prevents IgA-stimulated protein tyrosine kinase activation, tyrosine phosphorylation of phospholipase C-γl, production of inositol triphosphate, and the stimulation of transcytosis by dIgA. Analysis of pIgR deletion mutants reveals that the same discrete portion of the cytoplasmic domain, residues 727–736 (but not the Tyr734), controls both the ability of pIgR to cause dIgA-induced tyrosine phosphorylation of the phospholipase C-γl and to undergo dIgA-stimulated transcytosis. In addition, dIgA transcytosis can be strongly stimulated by mimicking phospholipase C-γl activation. In combination with our previous results, we conclude that the protein tyrosine kinase(s) and phospholipase C-γl that are activated upon dIgA binding to the pIgR control dIgA-stimulated pIgR transcytosis.  相似文献   

12.
Diseases of the nasopharyngeal epithelium due to Epstein-Barr virus (EBV) infection typically occur in chronic virus carriers with preexisting virus-specific antibodies. In vitro studies have shown that EBV-specific immunoglobulin A (IgA) promotes infection of human epithelial cells, otherwise refractory to EBV, via the polymeric immunoglobulin receptor (pIgR). To determine if EBV similarly exploits IgA transport mechanisms in vivo, we examined the fate of IgA-EBV complexes in the blood of mice, where pIgR-mediated transcytosis of IgA immune complexes through hepatocytes eliminates exogenous antigens from the circulation. By PCR analysis we showed hepatobiliary transport of IgA-EBV in viremic mice, but without detectable hepatocellular infection by immunostaining. Because efficient transport of EBV immune complexes might avert an infectious outcome, we modulated the transcytotic pathway in polarized Madin-Darby canine kidney (MDCK) cells transfected with pIgR to determine the effect on viral antigen expression. Like hepatocytes in vivo, MDCK cells in polarized monolayers translocated IgA-EBV from the basal cell face into apical medium without evidence for infection. However, when exposed to IgA-EBV as unpolarized single-cell suspensions, MDCK cells expressed EBV immediate-early and early antigens. These results suggest that pIgR-mediated transcytosis of pIgA-EBV through epithelium facilitates endogenous spread of EBV in long-term virus carriers, with infection being confined to cells with altered polarity from prior cytopathology.  相似文献   

13.
Polarized epithelial cells contain apical and basolateral surfaces with distinct protein compositions. To establish and maintain this asymmetry, newly made plasma membrane proteins are sorted in the trans Golgi network for delivery to apical or basolateral surfaces. Signals for basolateral sorting are generally located in the cytoplasmic domain of the protein, whereas signals for apical sorting can be in any part of the protein and can depend on N-linked glycosylation of the protein. Signals for constitutive transcytosis to the apical surface have not been reported. In this study, we used the polymeric immunoglobulin receptor (pIgR), which is biosynthetically delivered to the basolateral surface. There the pIgR can bind a ligand and, with or without bound ligand, the pIgR can then be transcytosed to the apical surface. We found that the glycosylation of the pIgR did not affect the biosynthetic transport of the pIgR. However, glycosylation had an effect on pIgR apical transcytosis. Importantly, analysis of the cytoplasmic tail of the pIgR suggested that a short peptide segment was sufficient to transcytose the pIgR or a neutral reporter from the basolateral to the apical surface. This apical transcytosis sorting signal was not involved in polarized biosynthetic traffic of the pIgR.  相似文献   

14.
15.
Streptococcus pneumoniae binds to the ectodomain of the human polymeric Ig receptor (pIgR), also known as secretory component (SC), via a hexapeptide motif in the choline-binding protein SpsA. The SpsA-pIgR interaction mediates adherence and internalization of the human pathogen into epithelial cells. In this study the results of SpsA binding to human, mouse, and chimeric SC strongly supported the human specificity of this unique interaction and suggested that binding sites in the third and fourth Ig-like domain of human SC (D3 and D4, respectively) are involved in SpsA-pIgR complex formation. Binding of SpsA to SC-derived synthetic peptides indicated surface-located potential binding motifs in D3 and D4. Adherence and uptake of pneumococci or SpsA-coated latex beads depended on the SpsA hexapeptide motif as well as SpsA-binding sites in D3 and D4 of human pIgR. The involvement of D3 and D4 in adherence and invasion was demonstrated by the lack of binding of SpsA-coated latex beads to transfected epithelial cells expressing mutated pIgR. Finally, blocking experiments with chimeric human-mouse SC as well as synthetic peptides indicated the participation of D3 and a key role of D4 in pneumococcal invasion.  相似文献   

16.
We observed that phorbol myristate acetate (PMA) stimulates transcytosis of the polymeric immunoglobulin receptor (pIgR) in MDCK cells. Apical release of pre-endocytosed ligand (dimeric IgA) bound to the pIgR can be stimulated twofold within 7 min of addition of PMA while recycling of the ligand from the basal surface is not affected. In addition, apical surface delivery of pIgR and cleavage of its ectodomain to secretory component (SC) is also stimulated by PMA. The recycling of apically internalized ligand back to the apical surface is similarly stimulated. These results suggest that the stimulation of apical delivery is from an apical recycling compartment. The effect of PMA suggests that protein kinase C (PKC) is involved in the regulation of pIgR trafficking in MDCK cells. To test this we down regulated PKC activity by pre-treating cells with PMA for 16 h and observed that transcytosis could no longer be stimulated by PMA. Western blots show that the PKC isozymes alpha and to a lesser extent epsilon, are depleted from MDCK cells which have been pre-treated with PMA for 16 h and that treatment of MDCK cells with PMA for 5 min causes a dramatic translocation of the PKC alpha isozyme and a partial translocation of the epsilon isozyme from the cytosol to the membrane fraction of cell homogenates. This translocation suggests that the alpha and/or epsilon isozymes may be involved in PMA mediated stimulation of transcytosis. A mutant pIgR in which serines 664 and 726, the major sites of phosphorylation, are replaced by alanine is stimulated to transcytose by PMA, suggesting that phosphorylation of pIgR at these sites is not required for the effect of PMA. These results suggest that PMA-mediated stimulation of pIgR transcytosis may involve the activation of PKC alpha and/or epsilon, and that this stimulation occurs independently of the major phosphorylation sites on the pIgR. Finally, PMA stimulates transcytosis of basolaterally internalized transferrin, suggesting that PMA acts to generally stimulate delivery of endocytosed proteins to the apical surface.  相似文献   

17.
Human secretory component (SC) is associated with secretory immunoglobulins (IgA and IgM) and serves to protect the immunoglobulin in the harsh mucosal environment. SC is derived from the polymeric immunoglobulin receptor (pIgR) which transports polymeric immunoglobulins across epithelial cells into secretions. In this present study, we describe the first cloning, expression, in vitro refolding and purification of a free form of human secretory component (rSC) containing the five functional ligand binding domains using Escherichia coli BL21 (DE3). Free rSC was refolded from inclusion bodies by equilibrium dialysis after purification by nickel affinity chromatography under denaturing conditions. Refolded rSC was purified by gel filtration chromatography. Surface plasmon resonance and dot blot association analysis have shown that purified rSC binds IgM with a physiological equilibrium dissociation constant (KD) of 4.6x10(-8) M and shares structural similarity to native SC. This provides an important step in the elucidation of the structure of this immunologically important receptor.  相似文献   

18.
Autosomal-dominant polycystic kidney disease (ADPKD) is a common life-threatening genetic disease that leads to renal failure. No treatment is available yet to effectively slow disease progression. Renal cyst growth is, at least in part, driven by the presence of growth factors in the lumens of renal cysts, which are enclosed spaces lacking connections to the tubular system. We have shown previously shown that IL13 in cyst fluid leads to aberrant activation of STAT6 via the IL4/13 receptor. Although antagonistic antibodies against many of the growth factors implicated in ADPKD are already available, they are IgG isotype antibodies that are not expected to gain access to renal cyst lumens. Here we demonstrate that targeting antibodies to renal cyst lumens is possible with the use of dimeric IgA (dIgA) antibodies. Using human ADPKD tissues and polycystic kidney disease mouse models, we show that the polymeric immunoglobulin receptor (pIgR) is highly expressed by renal cyst-lining cells. pIgR expression is, in part, driven by aberrant STAT6 pathway activation. pIgR actively transports dIgA from the circulation across the cyst epithelium and releases it into the cyst lumen as secretory IgA. dIgA administered by intraperitoneal injection is preferentially targeted to polycystic kidneys whereas injected IgG is not. Our results suggest that pIgR-mediated transcytosis of antagonistic antibodies in dIgA format can be exploited for targeted therapy in ADPKD.  相似文献   

19.
《MABS-AUSTIN》2013,5(6):1122-1138
ABSTRACT

IgA antibodies have broad potential as a novel therapeutic platform based on their superior receptor-mediated cytotoxic activity, potent neutralization of pathogens, and ability to transcytose across mucosal barriers via polymeric immunoglobulin receptor (pIgR)-mediated transport, compared to traditional IgG-based drugs. However, the transition of IgA into clinical development has been challenged by complex expression and characterization, as well as rapid serum clearance that is thought to be mediated by glycan receptor scavenging of recombinantly produced IgA monomer bearing incompletely sialylated N-linked glycans. Here, we present a comprehensive biochemical, biophysical, and structural characterization of recombinantly produced monomeric, dimeric and polymeric human IgA. We further explore two strategies to overcome the rapid serum clearance of polymeric IgA: removal of all N-linked glycosylation sites creating an aglycosylated polymeric IgA and engineering in FcRn binding with the generation of a polymeric IgG-IgA Fc fusion. While previous reports and the results presented in this study indicate that glycan-mediated clearance plays a major role for monomeric IgA, systemic clearance of polymeric IgA in mice is predominantly controlled by mechanisms other than glycan receptor clearance, such as pIgR-mediated transcytosis. The developed IgA platform now provides the potential to specifically target pIgR expressing tissues, while maintaining low systemic exposure.  相似文献   

20.
The polymeric immunoglobulin receptor (pIgR) ensures the transport of dimeric immunoglobulin A (dIgA) and pentameric immunoglobulin M (pIgM) across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM) and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号