首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z Y Zhang  R L Van Etten 《Biochemistry》1991,30(37):8954-8959
The kcat and Km values for the bovine heart low molecular weight phosphotyrosyl protein phosphatase catalyzed hydrolysis of 16 aryl phosphate monoesters and of five alkyl phosphate monoesters having the structure Ar(CH2)nOPO3H2 (n = 1-5) were measured at pH 5.0 and 37 degrees C. With the exception of alpha-naphthyl phosphate and 2-chlorophenyl phosphate, which are subject to steric effects, the values of kcat are effectively constant for the aryl phosphate monoesters. This is consistent with the catalysis being nucleophilic in nature, with the existence of a common covalent phosphoenzyme intermediate, and with the breakdown of this intermediate being rate-limiting. In contrast, kcat for the alkyl phosphate monoesters is much smaller and the rate-limiting step for these substrates is interpreted to be the phosphorylation of the enzyme. A single linear correlation is observed for a plot of log (kcat/Km) vs leaving group pKa for both classes of substrates at pH 5.0: log (kcat/Km) = -0.28pKa + 6.88 (n = 19, r = 0.89), indicating a uniform catalytic mechanism for the phosphorylation event. The small change in effective charge (-0.28) on the departing oxygen of the substrate is similar to that observed in the specific acid catalyzed hydrolysis of monophosphate monoanions (-0.27) and is consistent with a strong electrophilic interaction of the enzyme with this oxygen atom in the transition state. The D2O solvent isotope effect and proton inventory experiments indicate that only one proton is "in flight" in the transition state of the phosphorylation process and that this proton transfer is responsible for the reduction of effective charge on the leaving oxygen.  相似文献   

2.
A M Davis  A C Regan  A Williams 《Biochemistry》1988,27(25):9042-9047
The title esters are demonstrated to be specific substrates of bovine pancreatic ribonuclease A (EC 3.1.27.5). The Br?nsted dependence of kcat/Km at pH 7.50 for the enzyme-catalyzed cyclization versus the pKa of the leaving phenol exhibits two regression lines of almost identical slope for respectively 2-chlorophenols and 2,6-unsubstituted phenols: log kcat/Km = -0.20 pKa ArOH + 5.47 (n = 5, r = 0.957); log kcat/Km = -0.17 pKa ArOH + 5.79 (n = 4, r = 0.965). Comparison of the Br?nsted beta 1g's with that for the standard reaction where imidazole catalyzes the cyclization (beta 1g = -0.59) indicates considerably less development of negative charge on the leaving oxygen in the enzyme case, providing experimental evidence for the hypothesis that electrophilic assistance is involved in catalysis. The existence of two essentially parallel Br?nsted correlations is not reflected in the standard reaction of substrate with imidazole. Modeling studies indicate that the phenyl ring of the substrate can take up a range of positions away from the active site; the presence of ortho chloro substituents considerably restricts the motion of the phenyl leaving group.  相似文献   

3.
Narine AA  Watson JN  Bennet AJ 《Biochemistry》2006,45(30):9319-9326
The sialidase from Micromonospora viridifaciens has been found to catalyze the hydrolysis of aryl 2-thio-alpha-D-sialosides with remarkable efficiency: the first- and second-order rate constants, kcat and kcat/Km, for the enzyme-catalyzed hydrolysis of PNP-S-NeuAc are 196 +/- 5 s(-1) and (6.7 +/- 0.7) x 10(5) M(-1) s(-1), respectively. A reagent panel of eight aryl 2-thio-alpha-D-sialosides was synthesized and used to probe the mechanism for the M. viridifaciens sialidase-catalyzed hydrolysis reaction. In the case of the wild-type enzyme, the derived Br?nsted parameters (beta(lg)) on kcat and kcat/Km are -0.83 +/- 0.11 and -1.27 +/- 0.17 for substrates with thiophenoxide leaving groups of pKa values > or = 4.5. For the general-acid mutant, D92G, the derived beta(lg) value on kcat for the same set of leaving groups is -0.82 +/- 0.12. When the conjugate acid of the departing thiophenol was < or = 4.5, the derived Br?nsted slopes for both the wild-type and the D92G mutant sialidase were close to zero. In contrast, the nucleophilic mutant, Y370G, did not display a similar break in the Br?nsted plots, and the corresponding values for beta(lg), for the three most reactive aryl 2-thiosialosides, on kcat and kcat/Km are -0.76 +/- 0.28 and -0.84 +/- 0.04, respectively. Thus, for the Y370G enzyme glycosidic C-S bond cleavage is rate-determining for both kcat and kcat/Km, whereas, for both the wild-type and D92G mutant enzymes, the presented data are consistent with a change in rate-determining step from glycosidic C-S bond cleavage for substrates in which the pKa of the conjugate acid of the leaving group is > or = 4.5, to either deglycosylation (kcat) or a conformational change that occurs prior to C-S bond cleavage (kcat/Km) for the most activated leaving groups. Thus, the enzyme-catalyzed hydrolysis of 2-thiosialosides is strongly catalyzed by the nucleophilic tyrosine residue, yet the C-S bond cleavage does not require the conserved aspartic acid residue (D92) to act as a general-acid catalyst.  相似文献   

4.
The second-order rate constants (kcat/Km) for the beta-glucosidase-catalyzed hydrolysis of aryl beta-D-glucopyranosides show a bell-shaped dependence of pH. The pKas that characterize this dependence are 4.4 (delta Hion approximately equal to 0) and 6.7 (delta Hion approximately equal to 0). In D2O these pKas are increased by 0.5 (+/- 0.1) unit, but there is no solvent isotope effect on the pH-independent second-order rate constant. Nath and Rydon [Nath, R. L., & Rydon, H. N. (1954) Biochem. J. 57, 1-10] examined the kinetics of the beta-glucosidase-catalyzed hydrolysis of a series of substituted phenyl glucosides. We have extended this study to include glucosides with phenol leaving groups of pKa less than 7. Br?nsted plots for this extended series were nonlinear for both kcat/Km and kcat. Br?nsted coefficients for those compounds with leaving groups of pKa greater than 7 (for kcat/Km) or pKa greater than 8.5 (for kcat) were nearly equal to -1.0, indicating substantial negative charge buildup on the leaving group in the transition state. The nonlinearity indicates an intermediate in the reaction. This was confirmed by partitioning experiments in the presence of methanol as a competing glucose acceptor. A constant product ratio, [methyl glucoside]/[glucose], was found with aryl glucoside substrates varying over 16,000-fold in reactivity (V/K), indicative of a common intermediate. Viscosity variation (in sucrose-containing buffers) was used to probe the extent to which the beta-glucosidase reactions are diffusion-controlled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The role of hydrophobic and electronic effects on the kinetic constants kcat and Km for the papain hydrolysis of a series of 22 substituted N-benzoylglycine pyridyl esters was investigated. The series studied comprises a wide variety of substituents on the N-benzoyl ring, with about a 300,000-fold range in their hydrophobicities, and 2.1-fold range in their electronic Hammet constants (sigma). It was found that the variation in the log kcat and log 1/Km constants could be explained by the following quantitative-structure activity relationships (QSAR): log 1/Km = 0.40 pi 4 + 4.40 and log 1/kcat = 0.45 sigma + 0.18. The substituent constant, pi 4, is the hydrophobic parameter for the 4-N-benzoyl substituents. QSAR analysis of two smaller sets of glycine phenyl and methyl esters produced similar results. A clear separation of the substituent effects indicates that in the case of these particular esters, acylation appears to be the rate limiting catalytic step.  相似文献   

6.
The relationship between structure and the Michaelis-Menten constants (Km) for the papain hydrolysis of a series of 37 N-benzoylglycine esters was investigated. The series studied comprises a wide range of aromatic and aliphatic esters with a 5000-fold variation in their Km constants and essentially constant kcat values. It was found that the variation in the Km constants could be rationalized by the following quantitative structure-activity relationship (QSAR): log 1/Km = 8.13F + 0.33Z + 1.27II3' + 1.95. In this equation F is the field inductive parameter, II3' is the hydrophobic constant for the more lipophilic of the two possible meta substituents and Z is the Van der Waals distance from oxygen through the end of the molecule, in the direction of the 4 position of the aromatic ester moiety.  相似文献   

7.
Martin BL  Jurado LA  Hengge AC 《Biochemistry》1999,38(11):3386-3392
Activation of calcineurin by Mn2+ and Mg2+ was compared using a heavy atom isotope analogue of the substrate p-nitrophenyl phosphate (pNPP). Heavy atom isotope effects were measured for Mg2+ activation and compared to published results of the isotope effects with Mn2+ as the activating metal. Isotope effects were measured for the kinetic parameter Vmax/Km at the nonbridging oxygen atoms [18(V/K)nonbridge]; at the position of bond cleavage in the bridging oxygen atom [18(V/K)bridge]; and at the nitrogen atom in the nitrophenol leaving group [15(V/K)]. The isotope effects increased in magnitude upon changing from an optimal pH to a nonoptimal pH; the 18(V/K)bridge effect increased from 1.0154 (+/-0.0007) to 1.0198 (+/-0.0002), and the 15(V/K) effect increased from 1.0018 (+/-0. 0002) to 1.0021 (+/-0.0003). The value for 18(V/K)nonbridge is 0. 9910 (+/-0.0003) at pH 7.0. As with Mn2+, the 18(V/K)nonbridge isotope effect indicated that the dianion was the substrate for catalysis, and that a dissociative transition state was operative for the phosphoryl transfer. Comparison to results for Mn2+ activation suggested that chemistry was more rate-limiting with Mg2+ than with Mn2+. Changing the activating metal concentration showed opposite trends with increasing Mg2+ increasing the commitment factor and seemingly making the chemistry less rate-limiting. The influence of viscosity was evaluated as well to gauge the role of chemistry. The activation of calcineurin-catalyzed hydrolysis of pNPP1 by Mg2+ or Mn2+ at pH 7.0 was compared in the presence of viscogens, glycerol and poly(ethylene glycol). Increasing glycerol caused different effects with the two activators. With Mn2+ as the activator, calcineurin activity showed a normal response with kcat and kcat/Km decreasing with viscosity. There was an inverse response with Mg2+ as the activator as values of kcat/Km increased with viscosity. From values of the normalized kcat/Km with Mn2+, the chemistry was found to be partially rate-limiting, consistent with previous heavy atom isotope studies (22). The effect observed for Mg2+ seems consistent with a change in the rate-limiting step for the two different metals at pH 7.0.  相似文献   

8.
S W King  V R Lum  T H Fife 《Biochemistry》1987,26(8):2294-2300
The carbamate ester N-(phenoxycarbonyl)-L-phenylalanine binds well to carboxypeptidase A in the manner of peptide substrates. The ester exhibits linear competitive inhibition toward carboxypeptidase A catalyzed hydrolysis of the amide hippuryl-L-phenylalanine (Ki = 1.0 X 10(-3) M at pH 7.5) and linear noncompetitive inhibition toward hydrolysis of the specific ester substrate O-hippuryl-L-beta-phenyllactate (Ki = 1.4 X 10(-3) M at pH 7.5). Linear inhibition shows that only one molecule of inhibitor is bound per active site at pH 7.5. The hydrolysis of the carbamate ester is not affected by the presence of 10(-8)-10(-9) M enzyme (the concentrations employed in inhibition experiments), but at an enzyme concentration of 3 X 10(-6) M catalysis can be detected. The value of kcat at 30 degrees C, mu = 0.5 M, and pH 7.45 is 0.25 s-1, and Km is 1.5 X 10(-3) M. The near identity of Km and Ki shows that Km is a dissociation constant. Substrate inhibition can be detected at pH less than 7 but not at pH values above 7, which suggests that a conformational change is occurring near that pH. The analogous carbonate ester O-(phenoxycarbonyl)-L-beta-phenyllactic acid is also a substrate for the enzyme. The Km is pH independent from pH 6.5 to 9 and has the value of 7.6 X 10(-5) M in that pH region. The rate constant kcat is pH independent from pH 8 to 10 at 30 degrees C (mu = 0.5 M) with a limiting value of 1.60 s-1. Modification of the carboxyl group of glutamic acid-270 to the methoxyamide strongly inhibits the hydrolysis of O-(phenoxycarbonyl)-L-beta-phenyllactic acid. Binding of beta-phenyllactate esters and phenylalanine amides must occur in different subsites, but the ratios of kcat and kcat/Km for the structural change from hippuryl to phenoxy in each series are closely similar, which suggests that the rate-determining steps are mechanistically similar.  相似文献   

9.
The mini-chain of human cathepsin H has been identified as the major structural element determining the protease's substrate specificity. A genetically engineered mutant of human cathepsin H lacking the mini-chain, des[Glu(-18)-Thr(-11)]-cathepsin H, exhibits endopeptidase activity towards the synthetic substrate Z-Phe-Arg-NH-Mec (kcat = 0.4 s(-1), Km = 92 microM, kcat/Km = 4348 M(-1) s(-1)) which is not cleaved by r-wt cathepsin H. However, the mutant enzyme shows only minimal aminopeptidase activity for H-Arg-NH-Mec (kcat = 0.8 s(-1), Km = 3.6 mM, kcat/Km = 222 M(-1) s(-1)) which is one of the best known substrates for native human cathepsin H (kcat = 2.5 s(-1), Km = 150 microM, kcat/Km = 16666 M(-1) s(-1)). Inhibition studies with chicken egg white cystatin and E-64 suggest that the mini-chain normally restricts access of inhibitors to the active site. The kinetic data on substrates hydrolysis and enzyme inhibition point out the role of the mini-chain as a structural framework for transition state stabilization of free alpha-amino groups of substrates and as a structural barrier for endopeptidase-like substrate cleavage.  相似文献   

10.
Haloalkane dehalogenases: steady-state kinetics and halide inhibition   总被引:2,自引:0,他引:2  
The substrate specificities and product inhibition patterns of haloalkane dehalogenases from Xanthobacter autotrophicus GJ10 (XaDHL) and Rhodococcus rhodochrous (RrDHL) have been compared using a pH-indicator dye assay. In contrast to XaDHL, RrDHL is efficient toward secondary alkyl halides. Using steady-state kinetics, we have shown that halides are uncompetitive inhibitors of XaDHL with 1, 2-dichloroethane as the varied substrate at pH 8.2 (Cl-, Kii = 19 +/- 0.91; Br-, Kii = 2.5 +/- 0.19 mM; I-, Kii = 4.1 +/- 0.43 mM). Because they are uncompetitive with the substrate, halide ions do not bind to the free form of the enzyme; therefore, halide ions cannot be the last product released from the enzyme. The Kii for chloride was pH dependent and decreased more than 20-fold from 61 mM at pH 8.9 to 2.9 mM at pH 6.5. The pH dependence of 1/Kii showed simple titration behavior that fit to a pKa of approximately 7.5. The kcat was maximal at pH 8.2 and decreased at lower pH. A titration of kcat versus pH also fits to a pKa of approximately 7.5. Taken together, these data suggest that chloride binding and kcat are affected by the same ionizable group, likely the imidazole of a histidyl residue. In contrast, halides do not inhibit RrDHL. The Rhodococcus enzyme does not contain a tryptophan corresponding to W175 of XaDHL, which has been implicated in halide ion binding. The site-directed mutants W175F and W175Y of XaDHL were prepared and tested for halide ion inhibition. Halides do not inhibit either W175F or W175Y XaDHL.  相似文献   

11.
Tanaka K  Suzuki T 《FEBS letters》2004,573(1-3):78-82
The purpose of this study is to elucidate the mechanisms of guanidine substrate specificity in phosphagen kinases, including creatine kinase (CK), glycocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and arginine kinase (AK). Among these enzymes, LK is unique in that it shows considerable enzyme activity for taurocyamine in addition to its original target substrate, lombricine. We earlier proposed several candidate amino acids associated with guanidine substrate recognition. Here, we focus on amino-acid residue 95, which is strictly conserved in phosphagen kinases: Arg in CK, Ile in GK, Lys in LK and Tyr in AK. This residue is not directly associated with substrate binding in CK and AK crystal structures, but it is located close to the binding site of the guanidine substrate. We replaced amino acid 95 Lys in LK isolated from earthworm Eisenia foetida with two amino acids, Arg or Tyr, expressed the modified enzymes in Escherichia coli as a fusion protein with maltose-binding protein, and determined the kinetic parameters. The K95R mutant enzyme showed a stronger affinity for both lombricine (Km=0.74 mM and kcat/Km=19.34 s(-1) mM(-1)) and taurocyamine (Km=2.67 and kcat/Km=2.81), compared with those of the wild-type enzyme (Km=5.33 and kcat/Km=3.37 for lombricine, and Km=15.31 and kcat/ Km=0.48for taurocyamine). Enzyme activity of the other mutant, K95Y, was dramatically altered. The affinity for taurocyamine (Km=1.93 and kcat/Km=6.41) was enhanced remarkably and that for lombricine (Km=14.2 and kcat/Km=0.72) was largely decreased, indicating that this mutant functions as a taurocyamine kinase. This mutant also had a lower but significant enzyme activity for the substrate arginine (Km=33.28 and kcat/Km=0.01). These results suggest that Eisenia LK is an inherently flexible enzyme and that substrate specificity is strongly controlled by the amino-acid residue at position 95.  相似文献   

12.
T5 5'-3'-exonuclease is a member of a family of homologous 5'-nucleases essential for DNA replication and repair. We have measured the variation of the steady state parameters of the enzyme with pH. The log of the association constant of the enzyme and substrate is pH-independent between pH 5 and 7, but at higher pH, it decreases (gradient -0.91 +/- 0.1) with increasing pH. The log of the turnover number increases (gradient 0.9 +/- 0.01) with increasing pH until a pH-independent plateau is reached. The T5 5'-3'-exonuclease-catalyzed reaction requires the protonation of a single residue for substrate binding, whereas kcat depends on a single deprotonation as demonstrated by the bell-shaped dependence of log (kcat/Km) on pH. To investigate the role of a conserved lysine (Lys-83), the pH profile of log (kcat/Km) of a K83A mutant was determined and found to increase with pH (gradient 1.01 +/- 0. 01) until a pH-independent plateau is reached. We therefore conclude that protonation of Lys-83 in the wild type protein facilitates DNA binding. The origin of the pH dependence of the kcat parameter of the wild type enzyme is discussed.  相似文献   

13.
The kinetic properties of Trypanosoma brucei brucei triose-phosphate isomerase are compared with those of the commercially available rabbit muscle and yeast enzymes and with published data on the chicken muscle enzyme. With glyceraldehyde 3-phosphate as substrate Km = 0.25 +/- 0.05 mM and kcat = 3.7 X 10(5) min-1. With dihydroxyacetone phosphate as substrate Km = 1.2 +/- 0.1 mM and kcat = 6.5 X 10(4) min-1. The pH dependence of Km and Vmax at 0.1 M ionic strength is in agreement with the results published for the yeast and chicken muscle enzymes. At ionic strength below 0.05 M the effect of a charged group specific for the trypanosomal enzyme and absent from the yeast and rabbit muscle enzymes becomes detectable. This effect significantly increases Km whereas Vmax becomes slightly higher. Trypanosomal triose-phosphate isomerase is inhibited by sulphate, phosphate and arsenate ions, by 2-phosphoglycolate and a number of documented inhibitors in the same concentration range as are the other triose-phosphate isomerases. The trypanocidal drug, Suramin inhibits T. brucei and rabbit muscle triose-phosphate isomerase to the same extent while leaving the yeast enzyme relatively unaffected.  相似文献   

14.
W L Mock  J T Tsay 《Biochemistry》1986,25(10):2920-2927
The substrate analogue 2-(1-carboxy-2-phenylethyl)-4-phenylazophenol is a potent competitive inhibitor of carboxypeptidase A. Upon ligation to the active site, the azophenol moiety undergoes a shift of pKa from a value of 8.76 to a value of 4.9; this provides an index of the Lewis acidity of the active site zinc ion. Examination of the pH dependence of Ki for the inhibitor shows maximum effectiveness in neutral solution (limiting Ki = 7.6 X 10(-7) M), with an increase in Ki in acid (pK1 = 6.16) and in alkaline solution (pK2 = 9.71, pK3 = 8.76). It is concluded that a proton-accepting enzymic functional group with the lower pKa (6.2) controls inhibitor binding, that ionization of this group is also manifested in the hydrolysis of peptide substrates (kcat/Km), and that the identity of this group is the water molecule that binds to the active site metal ion in the uncomplexed enzyme (H2OZn2+L3). Reverse protonation state inhibition is demonstrated, and conventional concepts regarding the mechanism of peptide hydrolysis by the enzyme are brought into question.  相似文献   

15.
Kinetic constants for the interaction of NADH and NADPH with native rat dihydropteridine reductase (DHPR) and an Escherichia coli expressed mutant (D-37-I) have been determined. Comparison of kcat and Km values measured employing quinonoid 6,7-dimethyldihydropteridine (q-PtH2) as substrate indicate that the native enzyme has a considerable preference for NADH with an optimum kcat/Km of 12 microM-1 s-1 compared with a figure of 0.25 microM-1 s-1 for NADPH. Although the mutant enzyme still displays an apparent preference for NADH (kcat/Km = 1.2 microM-1 s-1) compared with NADPH (kcat/Km = 0.6 microM-1 s-1), kinetic analysis indicates that NADH and NADPH have comparable stickiness in the D-37-I mutant. The dihydropteridine site is less affected, since the Km for q-PtH2 and K(is) for aminopterin are unchanged and the 14-26-fold synergy seen for aminopterin binding to E.NAD(P)H versus free E is decreased by less than 2-fold in the D-37-I mutant. No significant changes in log kcat and log kcat/Km versus pH profiles for NADH and NADPH were seen for the D-37-I mutant enzyme. However, the mutant enzyme is less stable to proteolytic degradation, to elevated temperature, and to increasing concentrations of urea and salt than the wild type. NADPH provides maximal protection against inactivation in all cases for both the native and D-37-I mutant enzymes. Examination of the rat DHPR sequence shows a typical dinucleotide binding fold with Asp-37 located precisely in the position predicted for the acidic residue that participates in hydrogen bond formation with the 2'-hydroxyl moiety of all known NAD-dependent dehydrogenases. This assignment is consistent with x-ray crystallographic results that localize the aspartate 37 carboxyl within ideal hydrogen bonding distance of the 2'- and 3'-hydroxyl moieties of adenosine ribose in the binary E.NADH complex.  相似文献   

16.
Nitric oxide (NO) is a key inter- and intracellular molecule involved in the maintenance of vascular tone, neuronal signaling, and host response to infection. The biosynthesis of NO in mammals involves a two-step oxidation of L-arginine (L-Arg) to citrulline and NO catalyzed by a particular class of heme-thiolate proteins, called NO-synthases (NOSs). The NOSs successively catalyze the Nomega-hydroxylation of the guanidine group of L-Arg with formation of Nomega-hydroxy-L-arginine (NOHA) and the oxidative cleavage of the CN(OH) bond of NOHA with formation of citrulline and NO. During the last decade, a great number of compounds bearing a CNH or CNOH function have been synthesized and studied as possible NO-producing substrates of recombinant NOSs. This includes derivatives of L-Arg and NOHA, N-alkyl (or aryl) guanidines, N,N'- or N,N-disubstituted guanidines, N-alkyl (or aryl) N'-hydroxyguanidines, N- (or O-) disubstituted N'-hydroxyguanidines, as well as amidoximes, ketoximes, and aldoximes. However, only those involving the NHC(NH2)=NH (or NOH) moiety have led to a significant formation of NO. All the N-monosubstituted N'-hydroxyguanidines that are well recognized by the NOS active site lead to NO with catalytic efficiences (kcat/Km) up to 50% of that of NOHA. This is the case of many N-aryl and N-alkyl N'-hydroxyguanidines, provided that the aryl or alkyl substituent is small enough to be accommodated by a NOS hydrophobic site located in close proximity of the NOS "guanidine binding site." As far as N-substituted guanidines are concerned, few compounds bearing a small alkyl group have been found to act as NO-producing substrates. The kcat value found for the best compound may reach 55% of the kcat of L-Arg oxidation. However, the best catalytic efficiency (kcat/Km) that was obtained with N-(4,4,4-trifluorobutyl) guanidine is only 100-fold lower than that of L-Arg. In a general manner, NOS II is a better catalyst that NOS I and III for the oxidation of exogenous guanidines and N-hydroxyguanidines to NO. This is particularly true for guanidines as the ones acting as substrates for NOS II have been found to be almost inactive for NOS I and NOS III. Thus, a good NO-producing guanidine substrate for the two latter isozymes remains to be found.  相似文献   

17.
Phosphonamidates as transition-state analogue inhibitors of thermolysin   总被引:3,自引:0,他引:3  
P A Bartlett  C K Marlowe 《Biochemistry》1983,22(20):4618-4624
Six phosphorus-containing peptide analogues of the form Cbz-NHCH2PO2--L-Leu-Y (Y = D-Ala, NH2, Gly, L-Phe, L-Ala, L-Leu) have been prepared and evaluated as inhibitors of thermolysin. The Ki values for these compounds range from 1.7 microM to 9.1 nM and correlate well with the Km/kcat values for the corresponding peptide substrates [Morihara, K., & Tsuzuki, H. (1970) Eur. J. Biochem. 15, 374-380] but not with the Km values alone. The correlation noted between inhibitor Ki and substrate Km/kcat is the most extensive one of this type, providing strong evidence that the phosphonamidates are transition-state analogues and not simply multisubstrate ground-state analogues. Cbz-NH2CH2PO2--L-Leu-L-Leu (Ki = 9.1 nM) is the most potent inhibitor yet reported for thermolysin.  相似文献   

18.
Substrate specificity of human mitochondrial low Km aldehyde dehydrogenase (EC 1.2.1.3) E2 isozyme has been investigated employing p-nitrophenyl esters of acyl groups of two to six carbon atoms and comparing with that of aldehydes of one to eight carbon atoms. The esterase reaction was studied under three conditions: in the absence of coenzyme, in the presence of NAD (1 mM), and in the presence of NADH (160 microM). The maximal velocity of the esterase reaction with p-nitrophenyl acetate and propionate as substrates in the presence of NAD was 3.9-4.7 times faster than that of the dehydrogenase reaction. Under all other conditions the velocities of dehydrogenase and esterase reactions were similar; the lowest kcat was for p-nitrophenyl butyrate in the presence of NAD. Stimulation of esterase activity by coenzymes was confined to esters of short acyl chain length; with longer acyl chain lengths or increased bulkiness (p-nitrophenyl guanidinobenzoate) no effect or even inhibition was observed. Comparison of kinetic constants for esters demonstrates that p-nitrophenyl butyrate is the worst substrate of all esters tested, suggesting that the active site topography is uniquely unfavorable for p-nitrophenyl butyrate. This fact is, however, not reflected in kinetic constants for butyraldehyde, which is a good substrate. The substrate specificity profile as determined by comparison of kcat/Km ratios was found to be quite different for aldehydes and esters. For aldehydes kcat/Km ratios increased with the increase of chain length; with esters under all three conditions, a V-shaped curve was produced with a minimum at p-nitrophenyl butyrate.  相似文献   

19.
Kinetic constants for the hydrolysis by porcine tissue beta-kallikrein B and by bovine trypsin of a number of peptides related to the sequence of kininogen (also one containing a P2 glycine residue instead of phenylalanine) and of a series of corresponding arginyl peptide esters with various apolar P2 residues have been determined under strictly comparative conditions. kcat and kcat/Km values for the hydrolysis of the Arg-Ser bonds of the peptides by trypsin are conspicuously high. kcat for the best of the peptide substrates, Ac-Phe-Arg-Ser-Val-NH2, even reaches kcat for the corresponding methyl ester, indicating rate-limiting deacylation also in the hydrolysis of a peptide bond by this enzyme. kcat/Km for the hydrolysis of the peptide esters with different nonpolar L-amino acids in P2 is remarkably constant (range 1.7), as it is for the pair of the above pentapeptides with P2 glycine or phenylalanine. kcat for the ester substrates varies fivefold, however, being greatest for the P2 glycine compounds. Obviously, an increased potential of a P2 residue for interactions with the enzyme lowers the rate of deacylation. In contrast to results obtained with chymotrypsin and pancreatic elastase, trypsin is well able to tolerate a P3 proline residue. In the hydrolysis of peptide esters, tissue kallikrein is definitely superior to trypsin. Conversely, peptide bonds are hydrolyzed less efficiently by tissue kallikrein and the acylation reaction is rate-limiting. The influence of the length of peptide substrates is similar in both enzymes and indicates an extension of the substrate recognition site from subsite S3 to at least S'3 of tissue kallikrein and the importance of a hydrogen bond between the P3 carbonyl group and Gly-216 of the enzymes. Tissue kallikrein also tolerates a P3 proline residue well. In sharp contrast to the behaviour of trypsin is the very strong influence of the P2 residue in tissue-kallikrein-catalyzed reactions. kcat/Km varies 75-fold in the series of the dipeptide esters with nonpolar L-amino acid residues in P2, a P2 glycine residue furnishing the worst and phenylalanine the best substrate, whereas this exchange in the pentapeptides changes kcat/Km as much as 730-fold. This behaviour, together with the high value of kcat/Km for Ac-Phe-Arg-OMe of 3.75 X 10(7) M-1 s-1, suggests rate-limiting binding (k1) in the hydrolysis of the best ester substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The kinetic parameter kcat/Km has been determined for the hydrolysis of peptide 4-nitroanilides, catalysed by complement component C1s. Substrates based on the C-terminal sequence of human C4a (Leu-Gln-Arg) were synthesised. Replacement of the glutamine residue by glycine or serine increased kcat/Km. Substitution of valine for the leucine residue increased kcat/Km, while substitution of glycine or lysine for the leucine residue decreased kcat/Km slightly. D-Val-Ser-Arg 4-nitroanilide is the most reactive 4-nitroanilide substrate towards C1s, so far. These results are discussed in relation to the amino acid sequences near the bonds cleaved by C1s in C4, C2 and C1 inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号