首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plant receptor-like kinases (RLKs) are important players in response to pathogen infections. Verticillium and Fusarium wilts, caused by Verticillium dahliae (Vd) and Fusarium oxysporum f. sp vasinfectum (Fov), respectively, are among the most devastating diseases in cotton (Gossypium spp). To understand the cotton response to these soil-borne fungal pathogens, we performed a genome-wide in silico characterization and functional screen of diverse RLKs for their involvement in cotton wilt diseases. We identified Gossypium hirsutum GhWAK7A, a wall-associated kinase, that positively regulates cotton response to both Vd and Fov infections. Chitin, the major constituent of the fungal cell wall, is perceived by lysin-motif-containing RLKs (LYKs/CERK1), leading to the activation of plant defense against fungal pathogens. A conserved chitin sensing and signaling system is present in cotton, including chitin-induced GhLYK5-GhCERK1 dimerization and phosphorylation, and contributes to cotton defense against Vd and Fov. Importantly, GhWAK7A directly interacts with both GhLYK5 and GhCERK1 and promotes chitin-induced GhLYK5-GhCERK1 dimerization. GhWAK7A phosphorylates GhLYK5, which itself does not have kinase activity, but requires phosphorylation for its function. Consequently, GhWAK7A plays a crucial role in chitin-induced responses. Thus, our data reveal GhWAK7A as an important component in cotton response to fungal wilt pathogens by complexing with the chitin receptors.  相似文献   

3.
Cotton (Gossypium hirsutum) wilt caused by Fusarium oxysporum f. sp. vasinfectum (Fov) is considered as a major threat for commercial cotton production worldwide. Relative expression ratios of two key pathogenesis-related (PR) genes (PR-3 and PR-10) and a detoxification gene (GST18) were compared between a fully susceptible (“LACTA”) and a partially field-resistant (“EMERALD”) cultivar after challenging with an Australian Fov isolate, as well as after pre-treatments with chemical inducers of defense such as BION® (a chemical analog of salicylic acid) and methyl-jasmonate (MeJA) prior to Fov inoculation. It was demonstrated that in both hypocotyls and roots of “EMERALD”, all PR genes were over-expressed after inoculation with Fov but not in the fully susceptible cultivar. Fov inoculation did not significantly affect GST18 expression in both cultivars. Exogenous application of each defense elicitor, prior to Fov inoculation, resulted in up-regulation of the three genes in root tissues of the fully susceptible cultivar. BION® application did not influence PR-3 expression in hypocotyls of both cultivars, whereas MeJA application resulted in induction of PR-3 in both cultivars. Furthermore, in hypocotyls of “LACTA”, over-expression of PR-10 was recorded after treatment with each chemical inducer. This pathogen exhibited different ability in eliciting oxidative burst in roots of the two cotton cultivars used in our analysis.  相似文献   

4.
以枯萎病菌诱导棉花基因表达谱中获得的差异表达bZIP作为探针,采用电子克隆结合RT-PCR方法从棉花抗枯萎病品种‘中棉所12’中克隆了1个TGA转录因子基因,命名为GhTGA2.2。序列分析表明,该基因的cDNA全长1 356bp,编码451个氨基酸,预测分子量为50.04kD,等电点为5.85,含有保守的bZIP结构域。系统进化树分析表明,GhTGA2.2属于bZIP亚家族的TGA转录因子,与拟南芥AtTGA2、烟草NtTGA2.2亲缘关系最近。qRT-PCR分析表明,经枯萎病菌诱导后,GhTGA2.2基因在抗病品种中呈上调表达,随处理后时间的推移,其相对表达量呈先升高后降低的趋势,并于处理后24h表达量达到最大;水杨酸诱导后1h,GhTGA2.2基因相对表达量迅速增加;茉莉酸和乙烯诱导后GhTGA2.2基因的相对表达量明显降低,呈下调表达。研究推测,GhTGA2.2基因可能通过水杨酸信号传导途径参与对枯萎病菌的防御反应。  相似文献   

5.
Summary In situ hybridization and immunogold labeling were performed to examine the temporal and spatial expression pattern of pathogenesis-related protein 1 (CABPR1) mRNA and PR-1 protein in pepper (Capsicum annuum L.) stem tissues infected by virulent and avirulent isolates ofPhytophthora capsici. CABPR1 mRNA accumulation was confirmed in the infected pepper stem tissue by Northern blot analysis and in situ hybridization. Northern blot analysis showed that the temporal expression ofCABPR1 mRNA varied greatly between compatible and incompatible interactions. An earlier expression of theCABPR1 gene, 6 h after inoculation, was observed in the incompatible interaction. In situ hybridization results revealed thatCABPR1 mRNA was expressed in the phloem areas of vascular bundles in infected pepper stem tissues, but especially strongly in the incompatible interaction. PR-1 protein was predominantly found in the intercellular spaces of pepper stem cells in the compatible and incompatible interactions 24 h after inoculation. Strikingly, the immunogold labeling was associated with fibrillar and electron-dense material localized in the intercellular space. Dense labeling of PR-1 protein was also seen at the interface of the pathogen and the host cell wall, whereas few gold particles were detected over the host cytoplasm. However, PR-1 protein was not detected over the fungal cell wall in either interaction.  相似文献   

6.
Treatment of rose shoots with 50 µM acibenzolar-S-methyl (BTH) resulted in increased protection against Diplocarpon rosae. This was accompanied by the induction and accumulation of a set of extracellular proteins as shown by SDS-PAGE and 2D-PAGE. Some of these proteins have been identified as PR-1, PR-2, PR-3 and PR-5 proteins by immunoblot analysis probed with tobacco antisera against PR-1c, PR-N, PR-Q and PR-S protein. Most of the extracellular proteins activated by BTH were also induced and found to accumulate in leaves upon infection with Diplocarpon rosae. However, their accumulation was much more pronounced in BTH-pretreated leaves than in water-pretreated leaves upon a challenge inoculation with D. rosae, particularly, the 15 kD PR-1, 36 and 37 kD PR-2 proteins. They may be more important in the expression of disease resistance.  相似文献   

7.
8.
9.
10.
Wu J  Luo X  Wang Z  Tian Y  Liang A  Sun Y 《Biotechnology letters》2008,30(3):547-554
A synthetic scorpion Hector Insect Toxin (AaHIT) gene, under the control of a CaMV35S promoter, was cloned into cotton via Agrobacterium tumefaciens-mediated transformation. Southern blot analyses indicated that integration of the transgene varied from one to more than three estimated copies per genome; seven homozygous transgenic lines with one copy of the T-DNA insert were then selected by PCR and Southern blot analysis. AaHIT expression was from 0.02 to 0.43% of total soluble protein determined by western blot. These homozygous transgenic lines killed larvae of cotton bollworm (Heliothis armigera) by 44–98%. The AaHIT gene could used therefore an alternative to Bt toxin and proteinase inhibitor genes for producing transgenic cotton crops with effective control of bollworm.  相似文献   

11.
Larvae of the mosquitoAedes aegypti ingested, and developed into adults, on a diet of 1O of 14 different species of cyanobacteria includingAgmenellum quadruplicatum PR-6 (=Synechococcus PCC7002). Mosquito larvae ingested and grew on cells of PR-6 adapted to growth in the absence of NaCl. ThecryIVD gene ofBacillus thuringiensis var.israelensis was cloned into a PR-6 expression vector to form pAQRM56, which was transformed into PR-6. Expression of the CryIVD protein in PR-6 was demonstrated by immunocytochemistry and larvicidal activity. Immunogold labelling indicated production of an electron-dense material among the thylakoid membranes of PR-6. Cells of PR-6 carrying pAQRM56 were toxic to the larvae ofA. aeqypti whereas control cells were not. Growth of PR-6 cells carrying pAQRM56 was slower than the growth of control cells and these cells were also larger.  相似文献   

12.
The aim of the investigation reported here was to assess the role of gibberellin in cotton fiber development. The results of experiments in which the gibberellin (GA) biosynthesis inhibitor paclobutrazol (PAC) was tested on in vitro cultured cotton ovules revealed that GA is critical in promoting cotton fiber development. Plant responses to GA are mediated by DELLA proteins. A cotton nucleotide with high sequence homology to Arabidopsis thaliana GAI (AtGAI) was identified from the GenBank database and analyzed with the BLAST program. The full-length cDNA was cloned from upland cotton (Gossypium hirsutum, Gh) and sequenced. A comparison of the putative protein sequence of this cDNA with all Arabidopsis DELLA proteins indicated that GhRGL is a putative ortholog of AtRGL. Over-expression of this cDNA in Arabidopsis plants resulted in the dwarfed phenotype, and the degrees of dwarfism were related to the expression levels of GhRGL. The deletion of 17 amino acids, including the DELLA domain, resulted in the dominant dwarf phenotype, demonstrating that GhRGL is a functional protein that affects plant growth. Real-time quantitative PCR results showed that GhRGL mRNA is highly expressed in the cotton ovule at the elongation stage, suggesting that GhRGL may play a regulatory role in cotton fiber elongation.  相似文献   

13.
Abstract

Expression profiles of ten genes commonly up-regulated during plant defense against microbial pathogens were compared temporally during compatible and incompatible interactions with first-instar Hessian fly larvae, in two wheat lines carrying different resistance genes. Quantitative real-time PCR revealed that while a lipoxygenase gene (WCI-2) was strongly up-regulated during the incompatible interactions, genes encoding β-1,3 endoglucanase (GNS) and an integral membrane protein (WIR1) were moderately responsive. Genes for thionin-like protein (WCI-3), PR-17-like protein (WCI-5), MAP kinase (WCK-1), phenylalanine ammonia-lyase (PAL), pathogenesis-related protein-1 (PR-1), receptor-like kinase (LRK10) and heat shock protein 70 (HSP70) were minimally responsive. The application of signaling molecules, salicylic acid (SA), methyl jasmonate (MJ) and abscisic acid (ABA), to insect-free plants demonstrated association of these genes with specific defense-response pathways. SA-induced up-regulation of a gene related to lipoxygenases that are involved in jasmonic acid (JA)-biosynthesis is suggestive of positive cross-talk between SA- and JA-mediated signaling pathways. Data suggest that alternative mechanisms may be involved since few of these classical defense-response genes are significantly up-regulated during incompatible interactions between wheat and Hessian fly.  相似文献   

14.
To study the possible involvement of plant hormones in the synthesis of stress proteins in tomato upon inoculation with Cladosporium fulvum, we investigated the induction of mRNAs encoding PR proteins and ethylene biosynthesis enzymes by ethephon, 2,6-dichloroisonicotinic acid (INA) and salicylic acid (SA) by northern blot analysis. Ethephon slightly induced some but not all mRNAs encoding intra- and extracellular PR proteins. INA induced all PR protein mRNAs analysed, except for intracellular chitinase and extracellular PR-4. SA induced all PR protein mRNAs analyzed, except for intracellular chitinase and osmotin. None of the inducers affected the expression of ACC synthase mRNA, whereas all three induced ethylene-forming enzyme (EFE) mRNA.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - HR hypersensitive response - INA 2,6-dichloroisonicotinic acid - PR pathogenesis-related - SA salicylic acid - SAR systemic acquired resistance  相似文献   

15.
16.
Amendments of nutrient-deficient soil with three organic manures and one non-edible oil-cake reduced the disease controlling potential of methoxyethyl mercury chloride (MEMC), quintozene and carbendazim used as seed treatments on cowpea and cotton against seedling rot caused by Rhizoctonia solani. Biogas sludge (BGS) and farm yard manure (FYM) nullified the activity of MEMC and quintozene and reduced markedly the efficacy of carbendazim. Humic acid extracted from BGS inactivated MEMC and carbendazim but had little effect on quintozene. Green manure (Sesbania aculeata) slightly reduced the efficacy of MEMC only. Soil amendment with mahua (Madhuca indica) cake and soil drench with its aqueous extract greatly reduced the efficacy of the three fungicides.  相似文献   

17.
18.
In an earlier work using tissue printing method, we found that the PR-10 stress protein was observed in leaf petiole of lupin seedling where lead was not detected (Przymusiński et al. 2001). These results suggested the presence of substance(s) mediating a signal transduction from directly affected cells to distant organs. As the hydrogen peroxide was found to be involved in signal transduction pathway, in the present paper, we analysed the level of H2O2 in the organ of lupin seedlings exposed to Pb2+ with spectrophotometric method and tissue printing technique. It was unequivocally demonstrated that the level of H2O2 and the activity of peroxidase increased in every tested organ of lead-treated lupin seedling. Both the level of H2O2 and the activity of POX were correlated with amount of Pb2+ ions in the cells (Przymusiński et al. 2001) and decreased in tissues more and more distant from the site of metal application. On the other hand, there was no correlation between the histological localization of H2O2 and peroxidase. Our results seem to confirm the hypothesis that H2O2 may act as a signalling substance involved in the induction of PR protein synthesis. It was indicated that there is high degree of correlation between the localization of H2O2 and the histological localization of PR-10 proteins (Przymusiński et al. 2001) in every tested organ of lupin seedling. The presented hypothesis is also supported by the fact that H2O2 and PR-10 proteins are detected in organs and tissues where Pb2+ was not found at all.  相似文献   

19.
Ethylene has been shown to be involved in triggering pathogenesis-related (PR) gene expression mainly in dicotyledonous species; however, less attention has been devoted identifying and characterizing PR genes in rice (Oryza sativa L.), a monocot and a model of cereal crop genera. Here, we demonstrate that ethylene induces at least three important rice PR genes, the PR10, PR1 basic (PR1b), and PR5 genes in rice (cv. Nipponbare) seedling leaf, upon treatment with the ethylene generator, ethephon (ET), in a light-, time- and dose-dependent manner. Induction of these PR genes was partially blocked by cycloheximide (CHX), a eukaryotic cytoplasmic protein synthesis inhibitor, which indicates an involvement of cytoplasmic de novo protein synthesis in their induction. These results clearly indicate a dynamic role for ethylene in PR genes induction in rice.  相似文献   

20.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder of muscular dystrophy characterized by muscle weakness and wasting. DM1 is caused by expansion of CTG repeats in the 3′-untranslated region (3′-UTR) of DM protein kinase (DMPK) gene. Since CUG-repeat RNA transcribed from the expansion of CTG repeats traps RNA-binding proteins that regulate alternative splicing, several abnormalities of alternative splicing are detected in DM1, and the abnormal splicing of important genes results in the appearance of symptoms. In this study, we identify two abnormal splicing events for actinin-associated LIM protein 3 (PDLIM3/ALP) and fibronectin 1 (FN1) in the skeletal muscles of DM1 patients. From the analysis of the abnormal PDLIM3 splicing, we propose that ZASP-like motif-deficient PDLIM3 causes the muscular symptoms in DM. PDLIM3 binds α-actinin 2 in the Z-discs of muscle, and the ZASP-like motif is needed for this interaction. Moreover, in adult humans, PDLIM3 expression is highest in skeletal muscles, and PDLIM3 splicing in skeletal muscles is regulated during human development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号