共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We have observed genetic recombination between ura3( -) mutations (among them extensive deletions) carried on "episomal" (i.e., 2micro DNA-containing) plasmids and other ura3( -) alleles present at the normal chromosomal URA3 locus. The recombination frequency found was comparable to the level observed for classical mitotic recombination but was relatively insensitive to sunlamp radiation, which strongly stimulates mitotic recombination. Three equally frequent classes could be distinguished among the recombinants. Two of these are the apparent result of gene conversions (or double crossovers) which leave the URA3(+) allele on the chromosome (class I) or on the plasmid (class II). The third class is apparently due to a single crossover that results in the integration of the plasmid into a chromosome. Plasmid-chromosome recombination can be useful in fine structure genetic mapping, since recombination between a chromosomal point mutation and a plasmid-borne deletion mutation only 25 base pairs distant was easily detected. 相似文献
3.
Richard P. O. Jones Ming-Chuan Wang Thomas A. Jowitt Caroline Ridley Kieran T. Mellody Marjorie Howard Tao Wang Paul N. Bishop Andrew J. Lotery Cay M. Kielty Clair Baldock Dorothy Trump 《The Journal of biological chemistry》2009,284(38):25938-25943
Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Missense mutations in fibulin 5 cause the elastin disorder cutis laxa and have been associated with age-related macular degeneration, a leading cause of blindness. We investigated the structure, hydrodynamics, and oligomerization of fibulin 5 using small angle x-ray scattering, EM, light scattering, circular dichroism, and sedimentation. Compact structures for the monomer were determined by small angle x-ray scattering and EM, and are supported by close agreement between the theoretical sedimentation of the structures and the experimental sedimentation of the monomer in solution. EM showed that monomers associate around a central cavity to form a dimer. Light scattering and equilibrium sedimentation demonstrated that the equilibrium between the monomer and the dimer is dependent upon NaCl and Ca2+ concentrations and that the dimer is dominant under physiological conditions. The dimerization of fragments containing just the cbEGF domains suggests that intermolecular interactions between cbEGFs cause dimerization of fibulin 5. It is possible that fibulin 5 functions as a dimer during elastinogenesis or that dimerization may provide a method for limiting interactions with binding partners such as tropoelastin.Fibulins are a family of seven extracellular matrix glycoproteins, some of which associate with elastic fibers and basement membranes (1, 2). They are involved in the assembly, organization, and stabilization of macromolecular complexes (3). Fibulins contain arrays of cbEGF2-like domains and a fibulin-type C-terminal (Fc) module (4). Fibulins 3–5 have a modified N-terminal cbEGF domain, followed by five cbEGF domains (4).Fibulin 5 (supplemental Fig. S1) is highly expressed in developing arteries with a low expression in adult vessels that is up-regulated following vascular injury and in atherosclerosis (5, 6). Expression has been detected in other elastin-rich tissues, including aorta, skin, uterus, lung, heart, ovary, and colon (5, 6). The extensibility of such tissues is provided by elastic fibers (7), and aging is associated with a loss of elasticity (8). Fibulin 5 is essential for elastinogenesis. The fibulin 5 knock-out mouse exhibits disorganized elastic fibers resulting in severe elastinopathies, with loose skin, vascular abnormalities, and emphysematous lungs. Similar changes are seen in an aged phenotype (9, 10). Mutations in fibulin 5 lead to the elastin disorder cutis laxa (11–13) and have been associated with age-related macular degeneration (14, 15).It has been shown that fibulin 5 binds elastic fibers (16) and interacts with tropoelastin (10), fibrillin 1 (17), lysyl oxidase-like protein 1 (18), -2, and -4 (19), latent transforming growth factor-β-binding protein 2 (19), emilin 1 (20), apolipoprotein (a) (21), and superoxide dismutase (22). Through an RGD motif fibulin 5 interacts with integrins (6, 9, 23).The assembly of elastic fibers is a complex hierarchical process. A model proposes that fibulin 5 associates with microfibrils via interactions with fibrillin 1; tropoelastin molecules bind fibulin 5 and coacervate, and lysyl oxidase-like protein 1 enzymes cross-link tropoelastin to form mature elastin (7, 16). Data that support this model indicate that fibulin 5 potentially increases the coacervation of tropoelastin, enhancing elastic fiber formation (24). However, other data suggest that fibulin 5 slows the maturation of elastin assemblies (25).Rotary-shadowing EM has suggested that fibulin 5 exists as a short rod with a globular domain at one end (26). We used size-exclusion column multiangle laser light scattering (SEC-MALLS), small angle x-ray scattering (SAXS), EM single particle analysis, analytical ultracentrifugation (AUC), CD, and isoelectric focusing to investigate the structures of fibulin 5 in monomeric and dimeric form, and the equilibrium between the two forms. 相似文献
4.
Crude extracts from ultraviolet (UV)-irradiated yeast cells compete with UV-irradiated transforming deoxyribonucleic acid (DNA) for photoreactivating enzyme. The amount of competition is taken as a measure of the level of cyclobutyl pyrimidine dimers in the yeast DNA. A calibration of the competition using UV-irradiated calf thymus DNA indicates that an incident UV dose (1,500 ergs/mm(2)) yielding 1% survivors of wild-type cells produces between 2.5 x 10(4) to 5 x 10(4) dimers per cell. Wild-type cells irradiated in the exponential phase of growth remove or alter more than 90% of the dimers within 220 min after irradiation. Pyrimidine dimers induced in stationary-phase wild-type cells appear to remain in the DNA; however, with incubation, they become less photoreactivable in vivo, although remaining photoreactivable in vitro. In contrast, exponentially growing or stationary-phase UV-sensitive cells (rad2-17) show almost no detectable alteration of dimers. We conclude that the UV-sensitive cells lack an early step in the repair of UV-induced pyrimidine dimers. 相似文献
5.
6.
7.
SIBSON D. ROSS; HUGHES STEPHEN G.; BRYANT JOHN A.; FITCHETT PAUL N. 《Journal of experimental botany》1988,39(6):795-802
From Hind III digests of Brassica napus (rape) nuclear DNA,seven DNA fragments were obtained which conferred on plasmidsthe ability to replicate autonomously in yeast. Six of thesewere analysed by restriction enzyme mapping, yielding six differentmaps and two were further characterized by defining the minimumeffective length and by sequencing. One of these had a minimumeffective length of 220 base pairs, was 86% A.T. and containeda direct match to the consensus sequence obtained from otherDNA's (i.e. DNA from other organisms) which replicate autonomouslyin yeast. The second fragment had a minimum effective lengthof 926 base pairs, was 69% A.T. and contained a 9/11 match tothe consensus sequence. Key words: Brassica napus, nuclear DNA, autonomous replication, plasmids, yeast 相似文献
8.
9.
10.
Desaturase enzymes are composed of two classes, the structurally well characterized soluble class found predominantly in the plastids of higher plants and the more widely distributed but poorly structurally defined integral membrane class. Despite their distinct evolutionary origins, the two classes both require an iron cofactor and molecular oxygen for activity and are inhibited by azide and cyanide, suggesting strong mechanistic similarities. The fact that the soluble desaturase is active as a homodimer prompted us test the hypothesis that an archetypal integral membrane desaturase from Saccharomyces cerevisiae, the Δ9-acyl-Co-A desaturase Ole1p, also exhibits a dimeric organization. Ole1p was chosen because it is one of the best characterized integral membrane desaturase and because it retains activity when fused with epitope tags. FLAG-Ole1p was detected by Western blotting of immunoprecipitates in which anti-Myc antibodies were used for capture from yeast extracts co-expressing Ole1p-Myc and Ole1p-FLAG. Interaction was confirmed by two independent bimolecular complementation assays (i.e. the split ubiquitin system and the split luciferase system). Co-expression of active and inactive Ole1p subunits resulted in an ∼75% suppression of the accumulation of palmitoleic acid, demonstrating that the physiologically active form of Ole1p in vivo is the dimer in which both protomers must be functional. 相似文献
11.
Hiroyoshi Takano 《Journal of plant research》2000,113(2):223-229
Physarum polycephalum. The conformation of Physarum mtDNA is currently thought to be circular. The inheritance of its mtDNA depends on the multiallelic mating type loci, matA. In a cross with ordinary matA combinations, the strain that has the higher matA status transmits its mtDNA to the progeny (uniparental inheritance). The mF plasmid promotes the fusion of mitochondria in
the zygote and during sporulation. When it exists in a strain with a lower status matA, the mF plasmid overcomes the force of uniparental inheritance and is preferentially transmitted to the progeny via mitochondrial
fusion. Moreover, the conformation of mtDNA is changed from circular to linear by recombination with the mF plasmid. Since
biparental inheritance usually occurs in a cross involving a combination of matA1 and matA15, two types of inheritance of Physarum mtDNA exist. Considering the existence of the mF plasmid, there are four patterns of cytoplasmic inheritance in P. polycephalum: 1) uniparental inheritance of mtDNA, 2) uniparental inheritance of mtDNA and preferential transmission of the mF plasmid,
3) biparental inheritance of mtDNA, and 4) biparental inheritance of mtDNA and the mF plasmid. This article describes the
events involved in each pattern. Finally, we discuss a hypothetical mechanism for mitochondrial fusion. The essential protein
may be the ORF640 protein encoded in the mF plasmid.
Received 8 March 2000/ Accepted in revised form 23 March 2000 相似文献
12.
Changlin Fu William P. Donovan Olga Shikapwashya-Hasser Xudong Ye Robert H. Cole 《PloS one》2014,9(12)
Molecular cloning is utilized in nearly every facet of biological and medical research. We have developed a method, termed Hot Fusion, to efficiently clone one or multiple DNA fragments into plasmid vectors without the use of ligase. The method is directional, produces seamless junctions and is not dependent on the availability of restriction sites for inserts. Fragments are assembled based on shared homology regions of 17–30 bp at the junctions, which greatly simplifies the construct design. Hot Fusion is carried out in a one-step, single tube reaction at 50°C for one hour followed by cooling to room temperature. In addition to its utility for multi-fragment assembly Hot Fusion provides a highly efficient method for cloning DNA fragments containing inverted repeats for applications such as RNAi. The overall cloning efficiency is in the order of 90–95%. 相似文献
13.
The inverted repeated sequences (foldback DNA) of yeast nuclear DNA have been examined by electron microscopy and hydroxyapatite chromatography. Of the inverted repeat structures seen in the electron microscope, 34% were hairpins and 66% had a single stranded loop at the end of a duplex stem. The number average length of the repeat was 0.3 kb and the single stranded loop was 1.6 kb. It is estimated that there are approximately 250 inverted repeats per haploid genome. A statistical analysis of the frequency of molecules containing multiple inverted repeats showed that these sequences are non-randomly distributed. The distribution of inverted repeats was also examined by measuring the fraction of total DNA in the foldback fraction that bound to hydroxyapatite as a function of single strand fragment size. This analysis also indicated that the inverted repeats are clustered. Renaturation kinetic analysis of isolated foldback and inverted repeat stem sequence DNA showed that these sequences are enriched for repetitive DNA. 相似文献
14.
Renaturable regions in the DNA strands of the N group plasmid pCU1 have been visualized as stem-loop structures by electron microscopy. Four such distinct structures are described, the smallest of which is within the loop of a larger one. The region of pCU1 in which these structures occur has several restriction sites. This and the availability of plasmid deletions and recombinants has permitted the mapping of these structures relative to one another and to the restriction and functional map of the plasmid. The replication and maintenance region of the plasmid is located within one of these stem-loop structures. 相似文献
15.
16.
从重组质粒rBS上切下柞蚕抗菌肽D基因片段,切去终止密码后连接到重组穿梭质粒pVT-GF上碱性成纤维细胞生长因子cDNA的5′端,使密码框正确排列,构建成融合基因重组质粒pVT-CDGF,转化到酵母中进行表达。转化子酵母蛋白粗提物用E.coliK12D31作指示菌进行抑菌圈测试,初步检出具有抑菌活性,用ELISA检测证明其具有碱性成纤维细胞生长因子的抗原性。 相似文献
17.
Using site-specific mutagenesis in vitro, we have constructed Escherichia coli strains that allow the detection of the inversion of an 800-bp segment in the lac region. The invertible segment is bounded by inverted repeats of either 12 or 23 bp. Inversions occurring at these inverted repeats will restore the Lac+ phenotype. Inversions can be detected at both short homologies at frequencies ranging from 0.5 x 10(-8) to 1 x 10(-7). These events, which have been verified by DNA sequence analysis, are reduced up to 1000-fold in strains deficient for either RecA, RecB or RecC. They are not reduced in strains deficient in the RecF, J pathway. These results show that the RecB,C,D system can mediate rearrangements at short sequence repeats, and probably plays a major role in cellular rearrangements. 相似文献
18.
Defective DNA Synthesis in Permeabilized Yeast Mutants 总被引:12,自引:0,他引:12
THE simple eukaryote, Saccharomyces cerevisiae, is suitable for combined genetic and biochemical analysis of the cell division cycle. More than forty temperature-sensitive mutants of S. cerevisiae defective in fifteen genes that control various steps of the yeast cell cycle have been detected by screening a collection of mutants with time-lapse photomicroscopy1. Mutations in two genes, cdc4 and cdc8, result in defective DNA synthesis at the restrictive temperature2. The product of cdc8 is apparently required throughout the period of DNA synthesis, because if a strain defective in this gene is shifted to 36° C within the S period, DNA replication ceases. In contrast, the product of cdc4 is apparently required only at the initiation of DNA synthesis because when a strain carrying a defect in this gene is shifted to 36° C, DNA replication already in progress is not impaired. Cells defective in cdc4, however, fail to initiate new rounds of DNA synthesis at the restrictive temperature. Based on these observations the DNA mutants have been tentatively classified as defective in DNA replication (cdc8) and in the initiation of DNA synthesis (cdc4). 相似文献
19.
Male Transmission of Linear Plasmids and Mitochondrial DNA in the Fungus Neurospora 总被引:2,自引:1,他引:2 下载免费PDF全文
One of the general rules of heredity is that in anisogamous matings genetic elements in organelles are inherited maternally. Nevertheless, there are cases of paternal transmission, both as rare exceptions, and as regular modes of inheritance. We report two new cases of paternal transmission in crosses of the model fungus Neurospora. First, we show leakage of a linear plasmid from males, the first case in fungi and the second in eukaryotes. Transmission frequencies ranged from 1% to 15% in different crosses, but some crosses showed no detectable male transmission. Second, we show leakage of male mitochondrial DNA (mtDNA), the second case in fungi. Some of the resulting progeny have only the male mtDNA type, but some are heteroplasmons. Heteroplasmons show novel restriction fragments attributable to recombination or rearrangement. Heteroplasmy of mtDNA through male transmission has not been reported previously in any eukaryote. In addition we have shown paternal leakage of circular mitochondrial plasmids, supporting another reported case. In a male bearing a linear and a circular plasmid, these plasmids and the mtDNA are transmitted in different combinations. These results show a potential for mitochondrial segregation and assortment during the sexual cycle in anisogamous fungi, pointing to more potential avenues for novel associations between genomic compartments, and between genomic and extragenomic elements. 相似文献
20.
染色体外DNA在酵母细胞衰老中的作用 总被引:1,自引:0,他引:1
细胞衰老的影响因素甚多,机制复杂。近年来已发现酵母染色体外DNA在细胞衰老中具有重要作用,并认为细胞的衰老受控于一种特定的染色体外DNA复制的次数,具有精确的时间控制机制[1、2]。1.染色体外DNA与衰老的关系酵母染色体外存在大小不等的rDNA环,称为染色体外rDNA环(extrachromo-somalrDNAcircle,ERC)。已发现衰老的酵母细胞中含有丰富的ERC,而年轻酵母细胞中的ERC则很少。芽殖酵母中含有人类Werner氏综合征(一种早老症)WRN基因的同源序列——SGS1基因… 相似文献