首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Glycosylation-inhibiting factor (GIF) is a 13-kDa cytokine secreted from T cells. Administration of bioactive recombinant GIF inhibits IgG1 and IgE Ab responses in vivo. Treatment of B cells with the cytokine reduces the secretion of IgG1 and IgE induced by LPS and IL-4. To examine the effect on cognate T-B interaction, GIF was added to low-density B cells from MD4 transgenic (Tg) mice, which express B cell receptor specific for hen egg lysozyme (HEL). The B cells were subsequently pulsed with HEL-OVA conjugate and cultured with OVA-specific naive CD4 T cells from DO11.10 Tg mice. Treatment of Ag-presenting B cells with GIF reduced expansion and IL-2 secretion of naive T cells and rendered them hyporesponsive to antigenic restimulation, resulting in 50--95% reduction of IL-4 and IFN-gamma secretion upon restimulation with Ag. GIF dramatically inhibited Th effector generation when it was added to B cells before pulsing with HEL-OVA, whereas it showed little to no effect when added after B cells were pulsed with Ag. GIF was more effective when B cells from MD4 Tg mice were pulsed with HEL-OVA than when they were pulsed with OVA. This cytokine did not affect Th effector generation when B cells or irradiated splenocytes pulsed with OVA(323--339) peptide stimulated naive DO11.10 T cells. Confocal microscopy revealed that GIF inhibited internalization of HEL by B cells from MD4 Tg mice. Therefore, the cytokine may regulate early steps of Ag presentation involving B cell receptors to diminish Th effector generation from naive CD4 T cells.  相似文献   

2.
T regulatory cells 1 inhibit a Th2-specific response in vivo   总被引:20,自引:0,他引:20  
We recently described a new population of CD4(+) regulatory T cells (Tr1) that inhibits proliferative responses of bystander T cells and prevents colitis induction in vivo through the secretion of IL-10. IL-10, which had been primarily described as a Th2-specific cytokine inhibiting Th1 responses, has displayed in several models a more general immune suppression on both types of effector T cell responses. Using an immediate hypersensitivity model in which BALB/c mice immunized with OVA (alum) normally generate Th2-dominated responses, we examined the ability of OVA-specific Tr1 T cell clones to inhibit OVA-specific cytokines and Ab responses. In contrast to Th2 or Th1 T cell clones, transfer of Tr1 T cell clones coincident with OVA immunization inhibited Ag-specific serum IgE responses, whereas IgG1 and IgG2a synthesis were not affected. This specific inhibition was mediated in part through IL-10 secretion as anti-IL-10 receptor Abs treatment reverted the inhibitory effect of Tr1 T cell clones. Although specifically targeted to IgE responses, Tr1 clones' inhibitory effects were more profound as they affected Ag-specific Th2 cell priming both in term of proliferative responses and cytokine secretion. These results suggest that regulatory T cells may play a fundamental role in maintaining the balance of the immune system to prevent allergic disorders.  相似文献   

3.
We have previously shown that IL-4 is an essential mediator for the synthesis of human IgE in vitro. In this study we demonstrate that prior physical contact with T cells is required by B cells to synthesize IgE in response to IL-4. Both autologous and allogeneic freshly prepared T cells were consistently able to support IL-4-dependent IgE synthesis, provided that they were added to B cells together with, or before, the addition of IL-4. In addition, most CD4+, as well as a proportion of CD8+, PHA-induced T cell clones (TCC) established from two HLA-DR incompatible donors, supported, in the presence of exogenous IL-4, the synthesis of IgE in B cells from the majority of individuals tested including both donors of cloned T cells. An alloreactive TCC able to produce IL-4 in response to HLA-DR4+ B cells and to induce HLA-DR4+ B cells to synthesize IgE, acquired the ability to support IgE synthesis by B cells lacking the appropriate alloantigen provided that exogenous IL-4 was added. Although the ability of freshly prepared T cells to support IgE synthesis was consistently abrogated by fixation with paraformaldehyde (PF), such a treatment variably affected the IgE-inducing ability of TCC. Preactivation with anti-CD3 before treatment with PF maintained or even enhanced the ability of TCC to support IL-4-dependent IgE synthesis. More importantly, preactivation with anti-CD3, followed by fixation with PF, enabled TCC, apparently devoid of IgE-inducing activity in unfixed condition, to support IL-4-dependent IgE synthesis. Taken together these data suggest that at least two signals are involved in the triggering of human B cells to IgE production: the first is delivered by a T-B cell contact and the second by IL-4. The physical signal delivered by T cells does not necessarily consist of cognate interaction. Non-cognate contact-dependent induction of B cells to IgE synthesis in response to IL-4 appears to be related to molecule(s) distinct from the TCR/CD3 complex, but fully expressed on the membrane of TCR/CD3-activated T cells.  相似文献   

4.
Humoral immune functions in IL-4 transgenic mice   总被引:6,自引:0,他引:6  
We have analyzed mice expressing IL-4 as a transgene, and found that expression of this lymphokine has profound effects on B cell function. B cells from transgenic mice exhibit phenotypic changes, including an increase in size and elevated expression of class II MHC. IL-4 increases the quantity of IgE produced by transgenic-derived B cells in response to LPS stimulation. In vivo, IL-4 markedly affects the serum Ig isotype repertoire. Serum levels of IgG1 and IgE are elevated, and levels of IgG2a, IgG2b, and IgG3 are depressed in IL-4 transgenic mice. Ag-specific antibody responses to immunization with hapten-carrier conjugates are also affected by IL-4. Transgenic mice show increased anti-hapten IgE and IgG1 and reduced anti-hapten IgG2a, IgG2b, and IgG3, compared with wild-type mice. Ag-specific IgE is substantially induced by T cell-dependent Ag, but not T cell-independent Ag, suggesting that cognate T-B interactions in addition to IL-4 are required for generating IgE responses in vivo. In vivo treatment with the anti-IL-4 mAb 11B11 reverses many of the isotype alterations in the transgenic mice, indicating that these changes arise as a direct consequence of IL-4 secretion.  相似文献   

5.
Interleukin-4 (IL-4) acts directly on purified human peripheral blood B cells cultured in the presence of Epstein-Barr virus (EBV) to induce IgE secretion and to enhance the secretion of IgG and IgM. Interferon-gamma (IFN-gamma) inhibits IgE secretion in this system, without affecting the secretion of the other Ig isotypes. To identify the time period during which EBV-infected B cells can be induced by IL-4 to secrete IgE, we have studied the effects of delayed addition of IL-4, or the termination of IL-4 stimulation by wash out or by neutralization with anti-IL-4 antibodies, on the induction of an IgE response. To induce a maximal IgE response, IL-4 had to be added to cultures of B cells plus EBV no later than 2 days after the initiation of culture, and had to remain present through the tenth day of culture. These two time points correspond to the initiation of detectable DNA synthesis (Days 3 to 4) and the earliest detectable Ig secretion (Days 10 to 12) by EBV-stimulated B cells. No IgE response was induced if the period during which EBV-stimulated B cells were cultured with IL-4 was less than 4 days, or if IL-4 were added later than the tenth day of culture, regardless of how long the culture was continued beyond that time. In contrast, IL-4 considerably enhanced IgG and IgM secretion and B cell CD23 expression, even if it was added after the tenth day of culture. IFN-gamma strongly inhibited the IgE response of B cells cultured with IL-4 plus EBV if added within 6 days of the initiation of culture, but had little effect on the generation of IgM or IgG responses made by these cells, regardless of the time of addition. Neither IL-4 nor IFN-gamma affected ongoing IgE secretion by an established, IgE-secreting, EBV-transformed cell line. These observations suggest that: (i) IL-4 first becomes able to induce EBV-activated B cells to secrete IgE as these cells begin to synthesize DNA, must stimulate B cells for at least 4 days to induce IgE secretion, and loses its ability to induce IgE secretion as these cells differentiate into Ig-secreting cells; (ii) the ability of IFN-gamma to suppress an IgE response is limited to this same time period; and (iii) IL-4 enhancement of CD23 expression and IgM and IgG secretion are independent of IL-4 induction of an IgE response.  相似文献   

6.
7.
Activated CD4+ T cells can be classified into distinct subsets; the most divergent among them may be considered to be the IL-2 and IFN-gamma-producing Th1 clones and the IL-4 and IL-5-producing Th2 clones. Because Th1 and Th2 clones can usually be detected only after several months of culture, we used conditions that modulate the IL-2 and IL-4 production in short term culture. Here we show that freshly isolated and subsequently in vitro-activated CD4+ T cells that were cultured for 11 days with rIL-2 and restimulated showed a IFN-gamma+ IL-2+ IL-3+ IL-4- IL-5- pattern. Because these cells were not capable of providing B cell help for IgG1, IgG2a, or IgE in an APC- and TCR-dependent T-B cell assay, they expressed a phenotype typical for most Th1 clones. In contrast, activated T cells that were cultured for 11 days with IL-2 plus a mAb to CD3 and then restimulated produced a IFN-gamma- IL-2- IL-3+ IL-4+ IL-5+ pattern. These cells were capable of providing B cell help for IgG1, IgG2a, and IgE synthesis and thus presented a phenotype typical for Th2 clones. Similar results were observed when mitogenic mAb to Thy-1.2 or to framework determinants of the alpha beta TCR were used. The induction of Th1- and Th2-like cells did not depend on the relative expression of CD44 or CD45 by the T cells before activation in vitro. Because the incubation of activated T cells with anti-CD3/TCR mAb induced high unrestricted lymphokine production, the latter might be responsible for the Th2-like lymphokine pattern observed after restimulation. To address this point, TCR V beta 8+ and V beta 8- T cell blasts were co-cultured in the presence of mAb to V beta 8. After restimulation, V beta 8+ cells had a IL-4high IL-2low phenotype and V beta 8- cells had a IL-4low IL-2high phenotype. This demonstrates that TCR ligation but not lymphokines alone are capable of inducing Th2-like cells, and this points out a central role for the TCR in the generation of T cell subsets.  相似文献   

8.
Allergic airway inflammation (AAI) is characterized by airway hyperreactivity, eosinophilia, goblet cell hyperplasia, and elevated serum IgE, however, it is unclear what mediates natural resolution after cessation of allergen exposure. This is important because the outcome of subsequent allergen challenge may depend on the concurrent inflammatory milieu of the lung. Using a murine AAI model, we demonstrate that after exposure to a defined natural protein allergen, Der p1, the response in lungs and draining mediastinal lymph nodes (dMLN) peaks between 4 and 6 days then declines until resolution by 21 days. Der p1-specific serum IgE follows the same pattern while IgG1 continues to increase. Resolution of AAI is mediated by CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs), which appear in lungs and dMLN following airway challenge. Treg depletion exacerbated lung eosinophilia, increased dMLN IL-5 and IL-13 but not IL-10 secretion, and increased allergic Ab responses. Most convincingly, transfer of CD4(+)CD25(+)Foxp3(+) T cells from Ag naive mice (natural Tregs) abolished AAI, decreased dMLN IL-5 and IL-13 secretion, increased dMLN IL-10 secretion, abolished IgE, and decreased IgG1 Abs. Blocking IL-10 receptor function in vivo did not block the anti-inflammatory function of transferred natural Tregs but did restore dMLN IL-5 and IL-13 secretion. Thus natural Tregs can control AAI in an IL-10 independent manner.  相似文献   

9.
Helper activity of several murine CD4+ T cell subsets was examined. Effector Th, derived from naive cells after 4 days of in vitro stimulation with alloantigen, when generated in the presence of IL-4, secreted high levels of IL-4, IL-5, and IL-6, and low levels of IL-2 and IFN-gamma, and induced the secretion of all Ig isotypes particularly IgM, IgG1, IgA, and IgE from resting allogeneic B cells. Effectors generated with IL-6 secreted IL-2, IL-4, IL-5, IL-6, and IFN-gamma, and induced similar levels of total Ig, 25 to 35 micrograms/ml, but with IgM, IgG3, IgG1, and IgG2a isotypes predominating. Helper activity of these Th was significantly greater than that of effectors generated with IL-2 (10-15 micrograms/ml Ig) and of 24-h-activated naive and memory cells (2-4 micrograms/ml), both of which induced mainly IgM. Unlike other isotypes, IgE was induced only by effector Th generated with IL-4. Blocking studies showed that secretion of all isotypes in response to IL-6-primed effectors was dependent on IL-2, IL-5, and IL-6. IL-4 was required for optimal IgM, IgG1, and IgA secretion, but limited secretion of IgG2a, whereas IFN-gamma was required for optimal IgG2a secretion, and limited IgM, IgG1, and IgA. In contrast, secretion of all isotypes in response to IL-4-primed effectors was dependent on IL-5, although IL-4 and IFN-gamma were also essential for IgE and IgG2a, respectively. Addition of exogenous IL-5 to B cell cultures driven by IL-6-primed effectors did not obviate the requirement for IL-2, IL-4, and IL-6, suggesting that interaction of IL-4-primed effectors with B cells was qualitatively different from that of IL-6-primed effectors, driving B cells to a stage requiring only IL-5 for differentiation. Addition of exogenous factors to IL-2-primed effector Th, particularly IL-4 in the presence of anti-IFN-gamma, resulted in levels of Ig, including IgE, comparable to those induced with other effectors. These results show that functionally distinct Th cell subsets can be generated rapidly in vitro, under the influence of distinct cytokines, which vary dramatically in their levels of help for resting B cells. The cytokines involved in responses to distinct Th cells differ depending on the quality of interaction with the B cell, and the extent of help is strongly determined by the quantity and nature of cytokines secreted by the T cells.  相似文献   

10.
The helper activity of resting T cells and in vitro generated effector T cells and the relative roles of cognate interaction, diffusible cytokines, and non-cognate T-B contact in B cell antibody responses were evaluated in a model in which normal murine CD4+ T cells (Th), activated with alloantigen-bearing APC, were used to support the growth and differentiation of unstimulated allogeneic B cells. Both "fresh" T cells, consisting of memory and naive cells, stimulated for 24 h, and "effector" T cells, derived from naive cells after 4 days of in vitro stimulation, induced the secretion of IgM, IgG3, IgG1, IgG2a, and IgA. Effector T cells were significantly better helpers of the response of small dense B cells, inducing Ig at lower numbers and inducing at optimal numbers 2- to 3-fold more Ig production than fresh T cells. The predominant isotype secreted was IgM. Supernatants derived from fresh T cell cultures contained moderate levels of IL-2, whereas those from effector cultures contained significant levels of IL-6 and IFN-gamma in addition to IL-2. The involvement of soluble factors in the B cell response was demonstrated by the ability of antibodies to the cytokines IL-2, IL-4, and IL-6 to each block Ig secretion. Antibodies to IL-5 and IFN-gamma had no effect on the T cell-induced response. Kinetic studies suggested that IL-4 acted during the initial stages of the response, whereas the inability of anti-IL-6 to block B cell proliferation suggested that IL-6 was involved in part in promoting differentiation of the B cells. The relative contributions of cognate (MHC-restricted) and bystander (MHC-unrestricted) T-B cell contact vs cytokine (non-contact)-mediated responses were assessed in a transwell culture system. The majority of the IgM, IgG3, IgG1, and IgG2a response induced by both fresh and effector T cells was dependent on cognate interaction with small, high density B cells. In contrast, a small proportion of these isotypes and most of the IgA secreted resulted from the action of IL-6 on large, presumably preactivated, B cells. The IgA response did not require cell contact or vary when fresh and effector cells were the helpers. The contribution of bystander contact in the overall antibody response to both T cell populations was minimal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells.  相似文献   

12.
As a model for understanding in vivo immune responses, we have exposed mice to aqueous haptenated-protein Ag, and examined immune responses to subsequent immunization with Ag in adjuvant. Pretreating mice with soluble, TNP-conjugated Ag induces selective nonresponsiveness to Ag for both humoral and cell-mediated immune functions. Specific T cell proliferation in response to Ag is inhibited, and Ag-induced secretion of the lymphokines IL-2 and IFN-gamma, but not IL-4, is reduced. B cell responses after pretreatment are also affected. Although levels of TNP-specific IgG1 and IgE are similar in treated and untreated mice, soluble Ag pretreatment diminishes production of TNP-specific IgG2a and IgG2b. This is due to lack of T cell help and is not caused by tolerance in the B cell compartment. These results indicate that pretreatment of mice with aqueous Ag induces selective unresponsiveness in Th1-like Th cells, which secrete IL-2 and IFN-gamma, but not in Th2-like Th cells, which secrete IL-4.  相似文献   

13.
Ag administered i.v. to mice along with specific IgE or IgG2a induces higher Ab- and CD4(+) T cell responses than Ag administered alone. The IgE effect is completely dependent on the low-affinity receptor for IgE, CD23, whereas the IgG2a effect depends on activating FcgammaRs. In vitro studies suggest that IgE/Ag is presented more efficiently than Ag alone to CD4(+) T cells by CD23(+) B cells and that IgG2a/Ag is presented by FcgammaR(+) dendritic cells (DCs). In this study, we investigate in vivo the early events leading to IgE- and IgG2a-mediated enhancement of immune responses. OVA administered i.v. in PBS in combination with specific IgE binds circulating B cells after 5 min and is found in B cell follicles bound to follicular B cells (CD23(high)) after 30 min. This novel B cell-dependent route of entry is specific for IgE because IgG2a-Ag complexes were trapped in the marginal zone. OVA-specific CD4(+) T cells were found at the T-B border in the T cell zones 12 h after immunization both with IgE/OVA or IgG2a/OVA and proliferated vigorously after 3 days. The findings suggest that IgE- and IgG2a-immune complexes are efficient stimulators of early CD4(+) T cell responses and that Ag bound to IgE has a specific route for transportation into follicles.  相似文献   

14.
Viruses exploit a number of strategies to evade immune recognition. In this study, we describe a novel mechanism by which EBV, rather than avoiding detection, subverts the immune response by stimulating regulatory T cells that secrete IL-10. Human PBMC from all EBV-seropositive, but not -seronegative, donors responded to both purified latent membrane protein 1 and the corresponding immunodominant peptides with high levels of IL-10 secretion by CD4(+) T cells. These IL-10 responses, characteristic of T regulatory 1 cells, inhibited T cell proliferation and IFN-gamma secretion induced by both mitogen and recall Ag. It was confirmed that the inhibition was IL-10 dependent by the use of neutralizing Ab. The deviation of the immune response toward suppression is likely to be important in maintaining latency and EBV-associated tumors.  相似文献   

15.
Aim and background: CD4+CD25+ cells are described as professional regulatory/suppressor T cells that are crucial for the prevention of spontaneous autoimmune diseases. They play an important role in maintaining a balanced peripheral immune system. On the other hand, it has been suggested that regulatory T cells (Treg) suppress antitumor immune responses after tumor-specific vaccinations. Therefore, we determined the percentage of regulatory T cells in cytokine-induced killer (CIK) cells, an effector cell population with high impact for adoptive immunotherapeutic strategies. Results: CIK cells showed strong induction of CD4+CD25+ cells with high secretion of interleukin 10 (IL-10) after unspecific stimulation of the TCR complex and stimulation with interleukin 2. Depletion of CD25+ cells led to an increase in cytotoxic activity and a reduction of IL-10 release. A more pronounced reversal of suppression could be induced by coculture of CIK cells with dendritic cells (DCs). After coculture of CIK cells with DCs, the number of CD4+CD25+ cells as well as the IL-10 concentration in the supernatant decreased, and the cytotoxic activity against pancreatic carcinoma cells increased. This was shown for cells from healthy donors as well as for cells from patients with pancreatic carcinoma. Conclusion: Our established effector cells possess some regulatory features induced by unspecific TCR-activation that could be prevented by coculture with DCs. CIK cells have desirable properties for immunotherapeutical approaches, especially after coculture with DCs, which could be used additionally for induction of a specific immune response.  相似文献   

16.
IL-4 suppression of in vivo T cell activation and antibody production   总被引:3,自引:0,他引:3  
Injection of mice with a foreign anti-IgD Ab stimulates B and T cell activation that results in large cytokine and Ab responses. Because most anti-IgD-activated B cells die before they can be stimulated by activated T cells, and because IL-4 prolongs the survival of B cells cultured with anti-Ig, we hypothesized that treatment with IL-4 at the time of anti-IgD Ab injection would decrease B cell death and enhance anti-IgD-induced Ab responses. Instead, IL-4 treatment before or along with anti-IgD Ab suppressed IgE and IgG1 responses, whereas IL-4 injected after anti-IgD enhanced IgE responses. The suppressive effect of early IL-4 treatment on the Ab response to anti-IgD was associated with a rapid, short-lived increase in IFN-gamma gene expression but decreased CD4+ T cell activation and decreased or delayed T cell production of other cytokines. We examined the possibilities that IL-4 stimulation of IFN-gamma production, suppression of IL-1 or IL-2 production, or induction of TNF-alpha or Fas-mediated apoptosis could account for IL-4's suppressive effect. The suppressive effect of IL-4 was not reversed by IL-1, IL-2, or anti-TNF-alpha or anti-IFN-gamma mAb treatment, or mimicked by treatment with anti-IL-2Ralpha (CD25) and anti-IL-2Rbeta (CD122) mAbs. Early IL-4 treatment failed to inhibit anti-IgD-induced Ab production in Fas-defective lpr mice; however, the poor responsiveness of lpr mice to anti-IgD made this result difficult to interpret. These observations indicate that exposure to IL-4, while T cells are first being activated by Ag presentation, can inhibit T cells activation or promote deletion of responding CD4+ T cells.  相似文献   

17.
The property of 109 CD4+ T cell clones (TCC) to induce IgE synthesis in vitro in human B cells was compared with their ability to produce IL-2, IL-4, and IFN-gamma in their supernatants (SUP) after 24-h stimulation with PHA. A significant positive correlation was found between the property of TCC to induce or enhance spontaneous IgE synthesis and their ability to release IL-4. In contrast, there was an inverse relationship between the IgE helper activity of TCC and their ability to release IFN-gamma, whereas no statistical correlation between the property to induce IgE synthesis and to produce IL-2 was observed. The ability of PHA-SUP from 71 CD4+ TCC to induce IgE synthesis in B cells was also investigated. Twenty-nine SUP (all derived from TCC active on IgE synthesis) induced production of substantial amounts of IgE in target B cells. There was a correlation between the amount of IgE synthesized by B cells in response to these SUP and their IL-4 content. An even higher correlation was found between the IgE synthesis induced by these SUP and the ratio between the amount of IL-4 and IFN-gamma present in the same SUP. Like IL-4-containing SUP, rIL-4 also showed the ability to induce IgE production in B cells from both atopic and nonatopic donors. The addition to B cell cultures of anti-IL-4 antibody virtually abolished not only the IgE synthesis induced by rIL-4, but also that stimulated by TCC and their SUP. In contrast, the IgG synthesis induced by TCC SUP was not or only slightly inhibited by the anti-IL-4 antibody. These data indicate that IL-4 is an essential mediator for the IgE synthesis induced in vitro by human TCC and their SUP in the absence of a polyclonal activator, whereas IFN-gamma seems to exert a negative regulatory effect on the production of IgE.  相似文献   

18.
PGE2 is a potent inflammatory mediator with profound immune regulatory actions. The present study examined the effects of PGE2 on the activation/proliferation of CD4+ T cells using 37 cloned CD4+ T cell lines. Ten T cell clones sensitive to PGE2 and 10 T cell clones resistant to PGE2, as measured by proliferation in response to anti-CD3 Ab, were selected for comparison. It was found that the PGE2-sensitive T cells were characterized by low production (<200 pg/ml) of both IL-2 and IL-4, while PGE2-resistant T cells secreted high levels (>1000 pg/ml) of IL-2, IL-4, or both. The roles of IL-2 and IL-4 were confirmed by the finding that addition of exogenous lymphokines could restore PGE2-inhibited proliferation, and PGE2-resistant Th1-, Th2-, and Th0-like clones became PGE2 sensitive when IL-2, IL-4, or both were removed using Abs specific for the respective lymphokines. In addition, we showed that the CD45RA expression in PGE2-sensitive T cells was significantly lower than that in PGE2-resistant cells (mean intensity, 1.2 +/- 0.6 vs 7.8 +/- 5.7; p = 0.001). In contrast, CD45RO expression in PGE2-sensitive T cells was significantly higher that that in PGE2-resistant cells (mean intensity, 55.7 +/- 15.1 vs 33.4 +/- 12.9; p = 0.02). In summary, PGE2 predominantly suppressed CD45RA-RO+ CD4+ T cells with low secretion of both IL-2 and IL-4.  相似文献   

19.
Control of IgE Ab production is important for the prevention of IgE-related diseases. However, in contrast to the existing information on the induction of IgE production, little is known about the regulation of the production of this isotype, with the exception of the well-documented mechanism involving T cell subsets and their cytokine products. In this study, we demonstrate an alternative approach to interfere with the production of IgE, independent of the activity of T cells, which was discovered during the course of an investigation intended to clarify the mechanism of IgE-selective unresponsiveness induced by surface-coupled liposomal Ags. Immunization of mice with OVA-liposome conjugates induced IgE-selective unresponsiveness without apparent Th1 polarization. Neither IL-12, IL-10, nor CD8(+) T cells participated in the regulation. Furthermore, CD4(+) T cells of mice immunized with OVA-liposome were capable of inducing Ag-specific IgE synthesis in athymic nude mice immunized with alum-adsorbed OVA. In contrast, immunization of the recipient mice with OVA-liposome did not induce anti-OVA IgE production, even when CD4(+) T cells of mice immunized with alum-adsorbed OVA were transferred. In the secondary immune response, OVA-liposome enhanced anti-OVA IgG Ab production, but it did not enhance ongoing IgE production, suggesting that the IgE-selective unresponsiveness induced by the liposomal Ag involved direct effects on IgE, but not IgG switching in vivo. These results suggest the existence of an alternative mechanism not involving T cells in the regulation of IgE synthesis.  相似文献   

20.
IgE induction from human cells has generally been considered to be T cell dependent and to require at least two signals: IL-4 stimulation and T cell/B cell interaction. In the present study we report a human system of T cell-independent IgE production from highly purified B cells. When human cells were co-stimulated with a mAb directed against CD40 (mAb G28-5), there was induction of IgE secretion from purified blood and tonsil B cells as well as unfractionated lymphocytes. Anti-CD40 alone failed to induce IgE from blood mononuclear cells or purified B cells. The effect of the combination of anti-CD40 and IL-4 on IgE production was very IgE isotype specific as IgG, IgM, and IgA were not increased. Furthermore, anti-CD40 with IL-5 or PWM did not co-stimulate IgG, IgM, or IgA and in fact strongly inhibited PWM-stimulated IgG, IgM and IgA production from blood or tonsil cells. IgE synthesis induced by anti-CD40 plus IL-4 was IFN-gamma independent as is the in vivo production of IgE in humans; the doses of IFN-gamma that profoundly suppressed IgG synthesis induced by IL-4, or IL-4 plus IL-6, had no inhibitory effect on anti-CD40-induced IgE production. Anti-CD23 and anti-IL-6 also could not block anti-CD40 plus IL-4-induced IgE production, but anti-IL-4 totally blocked their effect. IgE production via CD40 was not due to IL-5, IL-6 or nerve growth factor as none of these synergized with IL-4 to induce IgE synthesis by purified B cells. Finally, we observed that CD40 stimulation alone could enhance IgE production from in vivo-driven IgE-producing cells from patients with very high IgE levels; cells that did not increase IgE production in response to IL-4. Taken together, our data suggest that the signals delivered for IgE production by IL-4 and CD40 stimulation may mimic the pathway for IgE production seen in vivo in human allergic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号