首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The symbiosis of Azorhizobium caulinodans and an annul legume Sesbania rostrata was recently found to be tolerant to cadmium pollution by an unknown mechanism. In this study, A. caulinodans ORS571 and ZY-20 showed much stronger tolerance to cadmium than a mutant ORS571-X15 and a common Rhizobium sp., with minimum inhibitory concentration values as high as 4 and 5 mM (versus 1 and 0.1 mM) on yeast extract mannitol agar medium, respectively. Although Cd uptake by all three strains of A. caulinodans were mostly from absorption rather than binding (both loosely or tightly) on cell surface, in resistant strains a higher portion of extractable Cd was bound on the cell surface vs. absorbed (about 1:2.5 ratio) compared to the sensitive mutant (about 1:35.1 ratio). These results suggest that certain level of metal exclusion by a permeability barrier was involved in the mechanism of resistance to Cd by A. caulinodans ORS571 and ZY-20. Over the 12-h period of cultivation in yeast extract mannitol agar medium with Cd addition, the Cd concentrations in the outer membrane and periplasm and spheroplast were the highest at the first 3 h, and declined steadily over time. The fact that Cd concentrations in spheroplast of all three strains were many folds higher than those in outer membrane and periplasm, suggests that extracellular sequestration was not the only mechanism of Cd tolerance in A. caulinodans. The decline of Cd concentrations was significantly faster and started earlier in strains ORS571 and ZY-20 than in ORS571-X15. This suggests a second, probably more substantial, mechanism involves active transport of the metal from the cell, e.g., some efflux system for maintaining homeostasis under cadmium stress.  相似文献   

2.
Abstract Asymbiotic nitrogenase activity was investigated in rhizobia strains isolated from stem and root nodules of severa Aeschynomene species. All isolated from stem-nodulating species were able to develop nitrogenase activity ex planta in the presence or in the absence of combined nitrogen, whereas root isolates from Aeschynomene species related to the cowpea group of plants showed little or no activity. Nitrogenase activity in soft-agar and in liquid cultures displayed by strains ORS310 and ORS322, isolated from stem nodules of A. indica and A. afraspera respectively, was of the same order of magnitude as that found for Azorhizobium caulinodans ORS571 and ten times higher than for Bradyrhizobium strain CB756. Furthermore, like A. caulinodans ORS571, strains ORS310 and ORS322 were able to use atmospheric nitrogen as sole nitrogen source for growth.  相似文献   

3.
In this work, we report the cloning and sequencing of the Azorhizobium caulinodans ORS571 hydrogenase gene cluster. Sequence analysis revealed the presence of 20 open reading frames hupTUVhypFhupSLCDFGHJK hypABhupRhypCDEhupE. The physical and genetic organization of A. caulinodans ORS571 hydrogenase system suggests a close relatedness to that of Rhodobacter capsulatus. In contrast to the latter species, a gene homologous to Rhizobium leguminosarum hupE was identified downstream of the hyp operon. A hupSL mutation drastically reduced the high levels of hydrogenase activity induced by the A. caulinodans ORS571 wild-type strain in symbiosis with Sesbania rostrata plants. However, no significant effects on dry weight and nitrogen content of S. rostrata plants inoculated with the hupSL mutant were observed in plant growth experiments.  相似文献   

4.
The hemY gene of the Bacillus subtilis hemEHY operon is essential for protoheme IX biosynthesis. Two previously isolated hemY mutations were sequenced. Both mutations are deletions affecting the hemY reading frame, and they cause the accumulation of coproporphyrinogen III or coproporphyrin III in the growth medium and the accumulation of trace amounts of other porphyrinogens or porphyrins intracellularly. HemY was found to be a 53-kDa peripheral membrane-bound protein. In agreement with recent findings by Dailey et al. (J. Biol. Chem. 269:813-815, 1994) B. subtilis HemY protein synthesized in Escherichia coli oxidized coproporphyrinogen III and protoporphyrinogen IX to coproporphyrin and protoporphyrin, respectively. The protein is not a general porphyrinogen oxidase since it did not oxidize uroporphyrinogen III. The apparent specificity constant, kcat/Km, for HemY was found to be about 12-fold higher with coproporphyrinogen III as a substrate compared with protoporphyrinogen IX as a substrate. The protoporphyrinogen IX oxidase activity is consistent with the function of HemY in a late step of protoheme IX biosynthesis, i.e., HemY catalyzes the penultimate step of the pathway. However, the efficient coproporphyrinogen III to coproporphyrin oxidase activity is unexplained in the current view of protoheme IX biosynthesis.  相似文献   

5.
6.
Protoporphyrin formation in Rhizobium japonicum.   总被引:7,自引:6,他引:1       下载免费PDF全文
The obligately aerobic soybean root nodule bacterium Rhizobium japonicum produces large amounts of heme (iron protoporphyrin) only under low oxygen tensions, such as exist in the symbiotic root nodule. Aerobically incubated suspensions of both laboratory-cultured and symbiotic bacteria (bacteroids) metabolize delta-aminolevulinic acid to uroporphyrin, coproporphyrin, and protoporphyrin. Under anaerobic conditions, suspensions of laboratory-cultured bacteria form greatly reduced amounts of protoporphyrin from delta-aminolevulinic acid, whereas protoporphyrin formation by bacteroid suspensions is unaffected by anaerobiosis, suggesting that bacteroids form protoporphyrin under anaerobic conditions more readily than do free-living bacteria. Oxygen is the major terminal electron acceptor for coproporphyrinogen oxidation in cell-free extracts of both bacteroids and free-living bacteria. In the absence of oxygen, ATP, NADP, Mg2+, and L-methionine are required for protoporphyrin formation in vitro. In the presence of these supplements, coproporphyrinogenase activity under anaerobic conditions is 5 to 10% of that observed under aerobic conditions. Two mechanisms for coproporphyrinogen oxidation exist in R. japonicum: an oxygen-dependent process and an anaerobic oxidation in which electrons are transferred to NADP. The significance of these findings with regard to heme biosynthesis in the microaerophilic soybean root nodule is discussed.  相似文献   

7.
Improved conditions were used for the aseptic growth of Arabidopsis thaliana to investigate whether xylem colonization of A. thaliana by Azorhizobium caulinodans ORS571 might occur. When seedlings were inoculated with ORS571 (pXLGD4) tagged with the lacZ reporter gene, nearly all of the plants showed blue regions of ORS571 colonization at lateral root cracks (LRC). The flavonoids naringenin and liquiritigenin significantly stimulated colonization of LRC by ORS571. Blue bands of ORS571 (pXLGD4) bacteria were observed histochemically in the xylem of intact roots of inoculated plants. Detailed microscopic analysis of sections of primary and lateral roots from inoculated A. thaliana confirmed xylem colonization. Xylem colonization also occurred with an ORS571 nodC mutant deficient in nodulation factors. There was no significant difference in the percentage of plants with xylem colonization or in the mean length of xylem colonized per plant between plants inoculated with either ORS571 (pXLGD4) or ORS571::nodC (pXLGD4), with or without naringenin.  相似文献   

8.
In response to phenolic compounds exuded by the host plant, symbiotic Rhizobium bacteria produce signal molecules (Nod factors), consisting of lipochitooligosaccharides with strain-specific substitutions. In Azorhizobium caulinodans strain ORS571 these modifications are an O -arabinosyl group, an O -carbamoyl group, and an N -methyl group. Several lines of evidence indicate that the nodS gene located in the nodABCSUIJ operon is implicated in the methylation of Nod factors. Previously we have shown that NodS is an S -adenosyl- l -methionine (SAM)-binding protein, essential for the l -[3H-methyl]-methionine labelling of ORS571 Nod factors in vivo . Here, we present an in vitro assay showing that NodS from either A. caulinodans or Rhizobium species NGR234 methylates end-deacetylated chitooligosaccharides, using [3H-methyl]-SAM as a methyl donor. The enzymatic and SAM-binding activity were correlated with the nodS gene and localized within the soluble protein fraction. The A. caulinodans nodS gene was expressed in Escherichia coli and a glutathione- S -transferase—NodS fusion protein purified. This protein bound SAM and could methylate end-deacetylated chitooligosaccharides, but could not fully methylate acetylated chitooligosaccharides or unmethylated lipo-chitooligosaccharides. These data implicate that the methylation step in the biosynthesis pathway of ORS571 Nod factors occurs after deacetylation and prior to acylation of the chitooligosaccharides.  相似文献   

9.
Following inoculation with Azorhizobium caulinodans ORS571 (pXLGD4), lateral root development of rice and colonization of lateral root cracks by bacteria were shown to be stimulated by the flavonoid naringenin. Rice seedlings growing aseptically in the presence of naringenin were inoculated with ORS571 (pXLGD4), carrying the lacZ reporter gene. By microscopic analysis of sections of inoculated rice roots, it has been demonstrated that the xylem of rice roots can be colonized by Azorhizobium caulinodans. We discuss whether this colonization of the xylem of rice roots by azorhizobia could provide a suitable niche for endophytic nitrogen fixation.  相似文献   

10.
11.
During heme biosynthesis in Escherichia coli two structurally unrelated enzymes, one oxygen-dependent (HemF) and one oxygen-independent (HemN), are able to catalyze the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Oxygen-dependent coproporphyrinogen III oxidase was produced by overexpression of the E. coli hemF in E. coli and purified to apparent homogeneity. The dimeric enzyme showed a Km value of 2.6 microm for coproporphyrinogen III with a kcat value of 0.17 min-1 at its optimal pH of 6. HemF does not utilize protoporphyrinogen IX or coproporphyrin III as substrates and is inhibited by protoporphyrin IX. Molecular oxygen is essential for the enzymatic reaction. Single turnover experiments with oxygen-loaded HemF under anaerobic conditions demonstrated electron acceptor function for oxygen during the oxidative decarboxylation reaction with the concomitant formation of H2O2. Metal chelator treatment inactivated E. coli HemF. Only the addition of manganese fully restored coproporphyrinogen III oxidase activity. Evidence for the involvement of four highly conserved histidine residues (His-96, His-106, His-145, and His-175) in manganese coordination was obtained. One catalytically important tryptophan residue was localized in position 274. None of the tested highly conserved cysteine (Cys-167), tyrosine (Tyr-135, Tyr-160, Tyr-170, Tyr-213, Tyr-240, and Tyr-276), and tryptophan residues (Trp-36, Trp-123, Trp-166, and Trp-298) were found important for HemF activity. Moreover, mutation of a potential nucleotide binding motif (GGGXXTP) did not affect HemF activity. Two alternative routes for HemF-mediated catalysis, one metal-dependent, the other metal-independent, are proposed.  相似文献   

12.
E Kruse  H P Mock    B Grimm 《The EMBO journal》1995,14(15):3712-3720
A full-length cDNA sequence encoding coproporphyrinogen oxidase was inserted in inverse orientation behind a CaMV promoter and transferred to tobacco (Nicotiana tabacum) by standard transformation techniques. Transformants showed reduced coproporphyrinogen oxidase activity and accumulation of photosensitive coproporphyrin(ogen), indicating antisense RNA expression. An inverse correlation was observed between the level of coproporphyrinogen oxidase and transformant phenotype. The latter is characterized by a broad range of growth retardation and necrosis, indicating oxidative leaf damage. Coproporphyrinogen is an apparent chromophore and its excitation finally leads to the production of reactive oxygen. Evidence is presented that indicates a direct correlation between the accumulation of non-metabolized coproporphyrinogen and oxidative damage to cellular structural components. Enzymatic and non-enzymatic antioxidants were investigated. Whereas superoxide dismutase activity increased in transgenic plants, catalase and ascorbate peroxidase activity remained constant. Tocopherol, rather than carotene or zeaxanthin, seemed to be involved in detoxification, indicating the putative localization and allocation of coproporphyrinogen. Expression of coproporphyrinogen oxidase antisense RNA did not significantly influence the level of other enzymes in the chlorophyll metabolic pathway, but deregulated gene expression of nuclear encoded plastid proteins. Accumulation of coproporphyrinogen and/or the resulting effects, such as oxidative stress, impairs a plastid/nuclear signal which may adapt gene expression to the plastid state.  相似文献   

13.
Azorhizobium caulinodans ORS571 is able to nodulate roots and stems of the tropical legume Sesbania rostrata. An ORS571 Tn5 insertion mutant, strain ORS571-X15, had a rough colony morphology, was nonmotile, and showed clumping behavior on various media. When this pleiotropic mutant was inoculated on roots or stems of the host, no nodules developed (Nod-). Compared with the wild type, strain ORS571-X15 produced lipopolysaccharides (LPS) with an altered ladder pattern on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggestive of a different O-antigen structure with a lower degree of polymerization. A cosmid clone, pRG20, that fully complemented all phenotypes of ORS571-X15 was isolated. With a 6-kb EcoRI subfragment of pRG20, clumping was relieved and nodulation was almost completely restored, but the strain was still nonmotile. LPS preparations from these complemented strains resembled the wild-type LPS, although minor quantitative and qualitative differences were evident. The sequence of the locus hit by the Tn5 in ORS571-X15 (the oac locus) revealed a striking homology with the rfb locus of Salmonella typhimurium, which is involved in O-antigen biosynthesis. The Tn5 insertion position was mapped to the oac3 gene, homologous to rfbA, encoding dTDP-D-glucose synthase. Biochemical assaying showed that ORS571-X15 is indeed defective in dTDP-D-glucose synthase activity, essential for the production of particular deoxyhexoses. Therefore, it was proposed that the O antigen of the mutant strain is devoid of such sugars.  相似文献   

14.
A nonpolar mutation was made in the oac2 gene of Azorhizobium caulinodans. oac2 is an ortholog of the Salmonella typhimurium rfbD gene that encodes a dTDP-L-rhamnose synthase. The knockout of oac2 changed the lipopolysaccharide (LPS) pattern and affected the extracellular polysaccharide production but had no effect on bacterial hydrophobicity. Upon hot phenol extraction, the wild-type LPS partitioned in the phenol phase. The LPS fraction of ORS571-oac2 partitioned in the water phase and had a reduced rhamnose content and truncated LPS molecules on the basis of faster migration in detergent gel electrophoresis. Strain ORS571-oac2 induced ineffective nodule-like structures on Sesbania rostrata. There was no clear demarcation between central and peripheral tissues, and neither leghemoglobin nor bacteroids were present. Light and electron microscopy revealed that the mutant bacteria were retained in enlarged, thick-walled infection threads. Infection centers emitted a blue autofluorescence under UV light. The data indicate that rhamnose synthesis is important for the production of surface carbohydrates that are required to sustain the compatible interaction between A. caulinodans and S. rostrata.  相似文献   

15.
茎瘤固氮根瘤基ORS571菌株在离体培养条件下,能利用色氨酸合成吲哚乙酸(IAA)。随着菌龄的老化,合成的IAA量也增加。除IAA外,该菌株还产生类GA物质。本研究未检出细胞分裂素(Cytokinin)类物质。  相似文献   

16.
Interactions of rhizobia with rice and wheat   总被引:1,自引:0,他引:1  
Webster  G.  Gough  C.  Vasse  J.  Batchelor  C.A.  O'Callaghan  K.J.  Kothari  S.L.  Davey  M.R.  Dénarié  J.  Cocking  E.C. 《Plant and Soil》1997,194(1-2):115-122
Recently, evidence has been obtained that naturally occurring rhizobia, isolated from the nodules of non-legume Parasponia species and from some tropical legumes, are able to enter the roots of rice, wheat and maize at emerging lateral roots by crack entry. We have now investigated whether Azorhizobium caulinodans strain ORS571, which induces root and stem nodules on the tropical legume Sesbania rostrata as a result of crack entry invasion of emerging lateral roots, might also enter rice and wheat by a similar route. Following inoculation with ORS571 carrying a lacZ reporter gene, azorhizobia were observed microscopically within the cracks associated with emerging lateral roots of rice and wheat. A high proportion of inoculated rice and wheat plants had colonized lateral root cracks. The flavanone naringenin at 10 and 10 M stimulated significantly the colonization of lateral root cracks and also intercellular colonization of wheat roots. Naringenin does not appear to be acting as a carbon source and may act as a signal molecule for intercellular colonization of rice and wheat by ORS571 by a mechanism which is nod gene-independent, unlike nodule formation in Sesbania rostrata. The opportunity now arises to compare and to contrast the ability of Azorhizobium caulinodans with that of other rhizobia, such as Parasponia rhizobia, to intercellularly colonize the roots of non-legume crops.  相似文献   

17.
Porphyrin-Accumulating Mutants of Escherichia coli   总被引:17,自引:9,他引:8       下载免费PDF全文
Four mutants (pop-1, pop-6, pop-10, and pop-14) which accumulate a red water-insoluble pigment were obtained in Escherichia coli K-12 AB1621. For each mutant, the red pigment was shown to be protoporphyrin IX, a late precursor of heme. Mutagenic treatment of mutant pop-1 yielded a secondary mutant, pop-1 sec-20, which accumulated a brown water-soluble pigment. The brown pigment was shown to be coproporphyrin III. Mutant pop-1 resembled the parental strain in its cytochrome absorption spectrum, catalase activity, and ability to grow on nonfermentable carbon and energy sources; therefore, its ability to produce and utilize heme was unimpaired. Judged on the same criteria, the secondary mutant, pop-1 sec-20, was partially heme and respiratory deficient. Growth in anaerobic conditions decreased by 25% the accumulation of protoporphyrin by pop-1; under the same conditions, pop-1 sec-20 did not accumulate coproporphyrin or coproporphyrinogen. The mutations causing protoporphyrin accumulation in all four pop mutants were found to map in the lac to purE (10-13 min) region of the E. coli chromosome. In the case of mutant pop-1, the mutation was shown to be strongly linked to the tsx locus (12 min). In mutant pop-1 sec-20, the second mutation causing coproporphyrin accumulation was co-transducible with the gal locus at a frequency of 88 to 96%. The mechanism of porphyrin accumulation by the mutants is discussed.  相似文献   

18.
As a consequence of the inhibition of one of the steps in the biosynthesis of the photopigments chlorophyll and phycobilin, the red microalga Galdieria partita excretes coproporphyrinogen III in the medium when growing on glucose. No coproporphyrinogen III was found when the closely related red microalgae G. sulphuraria strain 074G was grown on glucose and excessive amounts of oxygen. When under the same conditions oxygen was limiting, coproporphyrinogen III was present in the medium. We conclude that not glucose but the amount of oxygen in the medium results in the accumulation of coproporphyrinogen III. This is explained by the inactivition of the oxygen-dependent coproporphyrinogen III oxidase that converts coproporhyrinogen III to protoporphyrinogen IX, one of the intermediate steps in the biosynthesis of chlorophyl and phycobilin.  相似文献   

19.
Coproporphyrinogen oxidase (EC 1.3.3.3.) catalyzes the sixth enzymic step of the heme biosynthetic pathway. Coproporphyrinogen oxidase activity is increased in mutant cells of Saccharomyces cerevisiae deficient in heme synthesis and this effect can be partially reversed by the addition of exogenous hemin. A similar increase is found in wild type yeast cells grown anaerobically. The strain-dependent increase varies between 5- and 40-fold. The activity changes are paralleled by similar changes in the steady-state amounts of coproporphyrinogen oxidase protein determined by immunoblotting and the steady-state concentrations of coproporphyrinogen oxidase mRNA estimated by in vitro translation/immunoprecipitation. This demonstrates that coproporphyrinogen oxidase synthesis is regulated by heme and oxygen at a pretranslational level in a negative fashion.  相似文献   

20.
Azorhizobium caulinodans ORS571, a bacterium capable of nodulating roots and stems of the tropical legume Sesbania rostrata, has been shown to have no nodD-like gene located immediately upstream from its common nodABC locus. A clone carrying a functional nodD gene of strain ORS571 has now been isolated from a pLAFR1 gene library by screening for naringenin-induced expression of the common nod genes in an Agrobacterium background. Tn5 mutagenesis of the cloned insert DNA delimited the inducing activity to a +/- 0.8-kilobase-pair fragment. One of the Tn5 insertions in the activator locus was homogenotized in the ORS571 genome. This resulted in a mutant strain (ORS571-3) that was unable to induce common nod gene expression in the presence of host plant exudate or the flavanone naringenin and that had lost the capacity to nodulate the roots and stems of S. rostrata. Complementation of both mutant phenotypes was achieved upon introduction of the cloned nodD gene. Sequencing of the nodD locus indicated the presence of a single, 942-base-pair-long open reading frame (ORFD) with significant homology to the nodD gene of (brady)rhizobia. The level of homology, however, is the lowest thus far reported for this kind of gene. ORFD most likely initiates translation with a TTG start codon. Upstream from ORFD, a divergently oriented nod box-like sequence is present, the function of which remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号