首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The infundibulum links the nervous and endocrine systems, serving as a crucial integrating centre for body homeostasis. Here we describe that the chick infundibulum derives from two subsets of anterior ventral midline cells. One set remains at the ventral midline and forms the posterior-ventral infundibulum. A second set migrates laterally, forming a collar around the midline. We show that collar cells are composed of Fgf3(+) SOX3(+) proliferating progenitors, the induction of which is SHH dependent, but the maintenance of which requires FGF signalling. Collar cells proliferate late into embryogenesis, can generate neurospheres that passage extensively, and differentiate to distinct fates, including hypothalamic neuronal fates and Fgf10(+) anterior-dorsal infundibular cells. Together, our study shows that a subset of anterior floor plate-like cells gives rise to Fgf3(+) SOX3(+) progenitor cells, demonstrates a dual origin of infundibular cells and reveals a crucial role for FGF signalling in governing extended infundibular growth.  相似文献   

3.
Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation.  相似文献   

4.
FGF signaling through FGFR1 is required for olfactory bulb morphogenesis   总被引:9,自引:0,他引:9  
During development, the embryonic telencephalon is patterned into different areas that give rise to distinct adult brain structures. Several secreted signaling molecules are expressed at putative signaling centers in the early telencephalon. In particular, Fgf8 is expressed at the anterior end of the telencephalon and is hypothesized to pattern it along the anteroposterior (AP) axis. Using a CRE/loxP genetic approach to disrupt genes in the telencephalon, we address the role of FGF signaling directly in vivo by abolishing expression of the FGF receptor Fgfr1. In the Fgfr1-deficient telencephalon, AP patterning is largely normal. However, morphological defects are observed at the anterior end of the telencephalon. Most notably, the olfactory bulbs do not form normally. Examination of the proliferation state of anterior telencephalic cells supports a model for olfactory bulb formation in which an FGF-dependent decrease in proliferation is required for initial bulb evagination. Together the results demonstrate an essential role for Fgfr1 in patterning and morphogenesis of the telencephalon.  相似文献   

5.
6.
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.  相似文献   

7.
Male-to-female sex reversal in mice lacking fibroblast growth factor 9   总被引:14,自引:0,他引:14  
Colvin JS  Green RP  Schmahl J  Capel B  Ornitz DM 《Cell》2001,104(6):875-889
Fgfs direct embryogenesis of several organs, including the lung, limb, and anterior pituitary. Here we report male-to-female sex reversal in mice lacking Fibroblast growth factor 9 (Fgf9), demonstrating a novel role for FGF signaling in testicular embryogenesis. Fgf9(-/-) mice also exhibit lung hypoplasia and die at birth. Reproductive system phenotypes range from testicular hypoplasia to complete sex reversal, with most Fgf9(-/-) XY reproductive systems appearing grossly female at birth. Fgf9 appears to act downstream of Sry to stimulate mesenchymal proliferation, mesonephric cell migration, and Sertoli cell differentiation in the embryonic testis. While Sry is found only in some mammals, Fgfs are highly conserved. Thus, Fgfs may function in sex determination and reproductive system development in many species.  相似文献   

8.
The normal development of eyes relies on proper signaling through Fibroblast growth factor (FGF) receptors, but the source and identity of cognate ligands have remained largely unknown. We have found that Fgf19 is expressed in the developing chicken retina. In situ hybridization discloses dynamic expression patterns for Fgf19 in the optic vesicle, lens primordia and retinal horizontal cells. Overall expression pattern of Fgf19 during chicken embryogenesis was also examined: Fgf19 is expressed in the regions associated with cranial placodes induction, boundary regions of rhombomeres, somites, specific groups of neural cells in midbrain, hindbrain, and those derived from epibranchial placodes, and the apical ectodermal ridge of limb buds. Expression pattern of the Fgf19-orthologous gene Fgf15 was further examined in the mouse developing eye. Fgf15 is expressed in the optic vesicle, a subset of progenitor cells of neural retina, and emerging ganglion and amacrine cells during retinogenesis.  相似文献   

9.
10.
The importance of mesenchymal-epithelial interactions for the proper development of the pancreas has been acknowledged since the early 1960s, even though the molecule(s) mediating this process have remained unknown. We demonstrate here that Fgf10, a member of the fibroblast growth factor family (FGFs), plays an essential role in this process. We show that Fgf10 is expressed in the mesenchyme directly adjacent to the early dorsal and ventral pancreatic epithelial buds. In Fgf10(-/-) mouse embryos, the evagination of the epithelium and the initial formation of the dorsal and ventral buds appear normal. However, the subsequent growth, differentiation and branching morphogenesis of the pancreatic epithelium are arrested; this is primarily due to a dramatic reduction in the proliferation of the epithelial progenitor cells marked by the production of the homeobox protein PDX1. Furthermore, FGF10 restores the population of PDX1-positive cells in organ cultures derived from Fgf10(-/-) embryos. These results indicate that Fgf10 signalling is required for the normal development of the pancreas and should prove useful in devising methods to expand pancreatic progenitor cells.  相似文献   

11.
To elucidate roles of fibroblast growth factors (FGF)18 during vertebrate development, we examined expression patterns of Fgf18 in chick embryos and observed effects of FGF18 protein on the Hensen's node, isthmus, and limb buds. Fgf18 is expressed on the right side of the node before the expression of Fgf8 starts. FGF18 protein can induce expression of Fgf8 on the left side of the node, indicating involvement of both FGFs in specification of left-right asymmetry. In the developing brain, Fgf18 is expressed in the isthmus, following the Fgf8 expression. Since Fgf18 is induced ectopically during formation of the second midbrain by FGF8 protein, both FGFs also elaborate midbrain development. In the limb bud, Fgf18 is expressed in the mesenchyme and ectopic application of FGF18 protein inhibits bone growth in the limb. FGF18 is thus likely an endogenous ligand of FGF receptor 3, whose mutation causes bone dysplasia in humans. These results demonstrate that the FGF18-FGF8 signaling is involved in various organizing activities and the signaling hierarchies between FGF18 and FGF8 seem to change during patterning of different structures.  相似文献   

12.
13.
Fgf8 controls regional identity in the developing thalamus   总被引:1,自引:0,他引:1  
The vertebrate thalamus contains multiple sensory nuclei and serves as a relay station to receive sensory information and project to corresponding cortical areas. During development, the progenitor region of the diencephalon is divided into three parts, p1, p2 (presumptive thalamus) and p3, along its longitudinal axis. Besides the local expression of signaling molecules such as sonic hedgehog (Shh), Wnt proteins and Fgf8, the patterning mechanisms of the thalamic nuclei are largely unknown. Using mouse in utero electroporation to overexpress or inhibit endogenous Fgf8 at the diencephalic p2/p3 border, we revealed that it affected gene expression only in the p2 region without altering overall diencephalic size or the expression of other signaling molecules. We demonstrated that two distinctive populations in p2, which can be distinguished by Ngn2 and Mash1 in early embryonic diencephalon, are controlled by Fgf8 activity in complementary manner. Furthermore, we found that FGF activity shifts thalamic sensory nuclei on the A/P axis in postnatal brain. Moreover, gene expression analysis demonstrated that FGF signaling shifts prethalamic nuclei in complementary manner to the thalamic shift. These findings suggest conserved roles of FGF signaling in patterning along the A/P axis in CNS, and reveal mechanisms of nucleogenesis in the developing thalamus.  相似文献   

14.
Multiple roles for Hedgehog signaling in zebrafish pituitary development   总被引:1,自引:0,他引:1  
The endocrine-secreting lobe of the pituitary gland, or adenohypophysis, forms from cells at the anterior margin of the neural plate through inductive interactions involving secreted morphogens of the Hedgehog (Hh), fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) families. To better understand when and where Hh signaling influences pituitary development, we have analyzed the effects of blocking Hh signaling both pharmacologically (cyclopamine treatments) and genetically (zebrafish Hh pathway mutants). While current models state that Shh signaling from the oral ectoderm patterns the pituitary after placode induction, our data suggest that Shh plays a direct early role in both pituitary induction and patterning, and that early Hh signals comes from adjacent neural ectoderm. We report that Hh signaling is necessary between 10 and 15 h of development for induction of the zebrafish adenohypophysis, a time when shh is expressed only in neural tissue. We show that the Hh responsive genes ptc1 and nk2.2 are expressed in preplacodal cells at the anterior margin of the neural tube at this time, indicating that these cells are directly receiving Hh signals. Later (15-20 h) cyclopamine treatments disrupt anterior expression of nk2.2 and Prolactin, showing that early functional patterning requires Hh signals. Consistent with a direct role for Hh signaling in pituitary induction and patterning, overexpression of Shh results in expanded adenohypophyseal expression of lim3, expansion of nk2.2 into the posterior adenohypophysis, and an increase in Prolactin- and Somatolactin-secreting cells. We also use the zebrafish Hh pathway mutants to document the range of pituitary defects that occur when different elements of the Hh signaling pathway are mutated. These defects, ranging from a complete loss of the adenohypophysis (smu/smo and yot/gli2 mutants) to more subtle patterning defects (dtr/gli1 mutants), may correlate to human Hh signaling mutant phenotypes seen in Holoprosencephaly and other congenital disorders. Our results reveal multiple and distinct roles for Hh signaling in the formation of the vertebrate pituitary gland, and suggest that Hh signaling from neural ectoderm is necessary for induction and functional patterning of the vertebrate pituitary gland.  相似文献   

15.
Fibroblast growth factors (FGFs) are signals from the apical ectodermal ridge (AER) that are essential for limb pattern formation along the proximodistal (PD) axis. However, how patterning along the PD axis is regulated by AER-FGF signals remains controversial. To further explore the molecular mechanism of FGF functions during limb development, we conditionally inactivated fgf receptor 2 (Fgfr2) in the mouse AER to terminate all AER functions; for comparison, we inactivated both Fgfr1 and Fgfr2 in limb mesenchyme to block mesenchymal AER-FGF signaling. We also re-examined published data in which Fgf4 and Fgf8 were inactivated in the AER. We conclude that limb skeletal phenotypes resulting from loss of AER-FGF signals cannot simply be a consequence of excessive mesenchymal cell death, as suggested by previous studies, but also must be a consequence of reduced mesenchymal proliferation and a failure of mesenchymal differentiation, which occur following loss of both Fgf4 and Fgf8. We further conclude that chondrogenic primordia formation, marked by initial Sox9 expression in limb mesenchyme, is an essential component of the PD patterning process and that a key role for AER-FGF signaling is to facilitate SOX9 function and to ensure progressive establishment of chondrogenic primordia along the PD axis.  相似文献   

16.
17.
Fibroblast growth factor (FGF) signaling has been shown to play critical roles in vertebrate segmentation and elongation of the embryonic axis. Neither the exact roles of FGF signaling, nor the identity of the FGF ligands involved in these processes, has been conclusively determined. Fgf8 is required for cell migration away from the primitive streak when gastrulation initiates, but previous studies have shown that drastically reducing the level of FGF8 later in gastrulation has no apparent effect on somitogenesis or elongation of the embryo. In this study, we demonstrate that loss of both Fgf8 and Fgf4 expression during late gastrulation resulted in a dramatic skeletal phenotype. Thoracic vertebrae and ribs had abnormal morphology, lumbar and sacral vertebrae were malformed or completely absent, and no tail vertebrae were present. The expression of Wnt3a in the tail and the amount of nascent mesoderm expressing Brachyury were both severely reduced. Expression of genes in the NOTCH signaling pathway involved in segmentation was significantly affected, and somite formation ceased after the production of about 15-20 somites. Defects seen in the mutants appear to result from a failure to produce sufficient paraxial mesoderm, rather than a failure of mesoderm precursors to migrate away from the primitive streak. Although the epiblast prematurely decreases in size, we did not detect evidence of a change in the proliferation rate of cells in the tail region or excessive apoptosis of epiblast or mesoderm cells. We propose that FGF4 and FGF8 are required to maintain a population of progenitor cells in the epiblast that generates mesoderm and contributes to the stem cell population that is incorporated in the tailbud and required for axial elongation of the mouse embryo after gastrulation.  相似文献   

18.
Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the analyses of Fgf6 (-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remained largely unclear. Recent reports support the concept that FGF6 has a dual function in muscle regeneration, stimulating myoblast proliferation/migration and muscle differentiation/hypertrophy in a dose-dependent manner. The alternative use of distinct signaling pathways recruiting either FGFR1 or FGFR4 might explain the dual role of FGF6 in myogenesis. A role for FGF6 in the maintenance of a reserve pool of progenitor cells in the skeletal muscle has been also strongly suggested. The aim of this review is to summarize our knowledge on the involvement of FGF6 in myogenesis.  相似文献   

19.
The expression patterns of region-specific neuroectodermal genes and fate-map analyses in zebrafish gastrulae suggest that posterior neural development is initiated by nonaxial signals, distinct from organizer-derived secreted bone morphogenetic protein (BMP) antagonists. This notion is further supported by the misexpression of a constitutively active form of zebrafish BMP type IA receptor (CA-BRIA) in the zebrafish embryos. It effectively suppressed the anterior neural marker, otx2, but not the posterior marker, hoxb1b. Furthermore, we demonstrated that the cells in the presumptive posterior neural region lose their neural fate only when CA-BRIA and Xenopus dominant-negative fibroblast growth factor (FGF) receptors (XFD) are coexpressed. The indications are that FGF signaling is involved in the formation of the posterior neural region, counteracting the BMP signaling pathway within the target cells. We then examined the functions of Fgf3 in posterior neural development. Zebrafish fgf3 is expressed in the correct place (dorsolateral margin) and at the correct time (late blastula to early gastrula stages), the same point that the most precocious posterior neural marker, hoxb1b, is first activated. Unlike other members of the FGF family, Fgf3 had little mesoderm-inducing activity. When ectopically expressed, Fgf3 expands the neural region with suppression of anterior neural fate. However, this effect was mediated by Chordino (zebrafish Chordin), because Fgf3 induces chordino expression in the epiblast and Fgf3-induced neural expansion was substantially suppressed in dino mutants with mutated chordino genes. The results obtained in the present study reveal multiple actions of the FGF signal on neural development: it antagonizes BMP signaling within posterior neural cells, induces the expression of secreted BMP antagonists, and suppresses anterior neural fate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号