首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
清酒乳杆菌不仅可作为发酵香肠的发酵剂赋予香肠良好的风味和品质,而且绝大多数清酒乳杆菌细菌素对食源性致病菌单核增生李斯特菌具有较强的抑制作用。清酒乳杆菌细菌素种类多,性质各异。本文分别从清酒乳杆菌细菌素的种类,肉制品环境对清酒乳杆菌和细菌素稳定性的影响以及清酒乳杆菌细菌素在食品中的应用研究进行了概述,为寻找新的具有良好性能的清酒乳杆菌细菌素提供了参考。  相似文献   

2.
【背景】类植物乳杆菌L-ZS9是一株在食品发酵与保鲜方面具有潜在应用价值的产细菌素益生菌。【目的】深入了解环境胁迫影响类植物乳杆菌L-ZS9细菌素合成的重要相关调节基因的信息。【方法】通过高通量测序技术对类植物乳杆菌转录组进行测序,对所有转录本进行COG(Clusters of Orthologous Groups)、GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)分类和Pathway注释。【结果】转录组测序显示2个样品基因覆盖度都在90%以上,差异表达基因927个,其中744个上调,183个下调。KEGG分析结果表明,649个差异表达基因中68个集中在"ABC转运途径",占10.48%,其中3个基因表达上调超过16倍,1个基因表达下调超过1/16,暗示类植物乳杆菌L-ZS9细菌素合成与"ABC转运途径"密切相关。另外多个孤儿基因表达变化也超过16倍,有的甚至表达上调达万倍。【结论】进一步拓展了类植物乳杆菌的基因信息,为类植物乳杆菌细菌素代谢途径和逆境反应研究提供了坚实的基础。  相似文献   

3.
目的对从60例健康女性阴道中筛选出产生细菌素的优势乳杆菌进行鉴定,并为研制开发微生态制剂提供优良可靠菌种。方法利用牛津杯法筛选出19株乳杆菌,其菌株发酵乳酸量高并且产生细菌素。对19株乳杆菌进行了多项理化鉴定。结果19株乳杆菌分别为:格氏乳杆菌9株,唾液乳杆菌1株,卷曲乳杆菌9株。结论筛选的19株乳杆菌是健康女性阴道中的优势有益菌,具有较强的产酸能力,都产生细菌素,其中16株产生过氧化氢,某些菌株具有较高的生产应用价值。  相似文献   

4.
目的 针对多杀性巴氏杆菌耐药性不断增强的情况,寻找替抗产品。方法 使用MRS培养基分离酸菜中的乳酸菌菌株,采用16S rRNA基因测序鉴定分离菌株。对分离菌株进行发酵培养,研究其无菌发酵上清液对酶的敏感性、热稳定性、酸碱稳定性和其抑菌谱。结果 分离得到了1株优势乳酸菌YWH-4,经过16S rRNA基因测序鉴定该菌株为植物乳杆菌。植物乳杆菌YWH-4发酵上清液对胃蛋白酶具有高敏感性,推测其发酵上清液中具有抗菌活性物质细菌素。该细菌素具有良好的热稳定性,经100℃处理2 h后仍有较强抑菌活性;具有酸碱稳定性,在pH值3.0~5.0之间保持良好抑菌活性。结论 植物乳杆菌YWH-4所产细菌素对多杀性巴氏杆菌具有良好的抗菌活性。  相似文献   

5.
植物乳杆菌R260产细菌素发酵条件的研究   总被引:2,自引:0,他引:2  
目的 获取植物乳杆菌R260产细菌素的最佳发酵条件.方法用琼脂扩散法测定发酵液对苏云金芽胞杆菌的抑菌效价.结果 产细菌素的最佳培养基是MRS培养基,最适起始Ph为6.5,最适接种量和接种种龄分别为3%和12 h,产细菌素最适发酵温度和时间分别为30℃和20 h:细菌素在对数期开始产生,稳定期产量达到最大值.结论 通过优化发酵条件提高了细菌素的产量,达1656 IU/ml.  相似文献   

6.
【目的】研究人工合成的PlnA (Plantaricin A)诱导类植物乳杆菌L-XM1细菌素合成的功能及环境条件对其诱导效果的影响。【方法】制备类植物乳杆菌L-XM1 Bac?培养物, 用人工合成的PlnA对其进行诱导, 确定PlnA在类植物乳杆菌L-XM1细菌素合成中的作用, 并通过比较不同温度、pH以及NaCl浓度、乙醇浓度条件下PlnA的诱导活性, 研究环境条件对PlnA诱导效果的影响。【结果】在不同温度及pH条件下, 自诱导肽PlnA的诱导活性有很大的差异, 较高的培养温度及pH有利于其诱导活性的发挥。不同浓度的NaCl对PlnA的诱导活性影响不大。乙醇可以减弱PlnA的诱导活性, 高浓度的乙醇完全抑制PlnA的诱导活性。6%乙醇对细菌素合成的抑制可以被700 μg/L的PlnA消除, 含有8%乙醇的培养基中, 恢复细菌素的合成需要浓度高达1 000 μg/L的PlnA。【结论】环境条件可以影响诱导肽PlnA的诱导活性, 乙醇对细菌素合成的抑制可以通过增大PlnA的浓度消除。  相似文献   

7.
本研究以124株我国广西巴马百岁以上长寿老人源乳酸菌菌株为试材,采用双层琼脂平板扩散法筛选产细菌素的优良菌株。在排除有机酸、H2O2等的干扰后,菌株B02、B03、B04、B07、B11、B25、B24和B78的发酵上清液对受试的大肠埃希菌、金黄色葡萄球菌等5株指示菌都表现出很强的抑制作用;进一步硫酸铵沉淀、透析及浓缩处理后,其抑菌活性显著增强,同时蛋白酶敏感性试验显示其具有蛋白质性质,这些结果共同确定其为乳酸菌细菌素。最后,通过16S rRNA序列分析鉴定后确定B02为副干酪乳杆菌;B03为植物乳杆菌;B04为动物双歧杆菌;B07为干酪乳杆菌;B11为德氏乳杆菌保加利亚亚种;B24为鼠李糖乳杆菌;B25为粪肠球菌;B78为植物乳杆菌。  相似文献   

8.
1株产细菌素乳酸菌的筛选和鉴定   总被引:13,自引:2,他引:11  
目的 从植物性材料中筛选产细菌素的乳酸菌。方法 琼脂扩散法。结果 所筛选的产细菌素R260菌株经鉴定为植物乳杆菌。排除有机酸、过氧化氢等干扰因素后,发酵液仍有很强的抑菌作用;用胰蛋白酶和胃蛋白酶处理后,发酵液抑菌活性急剧下降,因而确定产生的抑菌物质具有蛋白质性质,是一种细菌素。抑菌谱试验测定表明,此菌株的发酵液不仅抑制革兰阳性菌,而且对部分革兰阴性菌也有抑制作用,因此产生的是一类广谱细菌素。结论筛选到了1株产广谱细菌素的乳酸菌。  相似文献   

9.
乳酸菌细菌素的分子生物学研究进展   总被引:11,自引:2,他引:9  
乳酸菌是一大类发酵糖产生大量乳酸的兼性厌氧菌 ,广泛应用于医药、食品、发酵等工业 ,主要包括乳杆菌( L actobacillus)、乳球菌 ( L actococcus)、明串珠菌( L euconostoc )、片球菌 ( Pediococcus )、链球菌( Streptococcus)、肠球菌 ( Enterococcus)、双歧杆菌( Bifidobacterium)和肉食杆菌 ( Carnobacterium)等属 [1 ]。许多乳酸菌除产生乳酸、乙酸和双乙酰外 ,还可产生一些具有抑菌或杀菌作用的细菌素 ( bacteriocin) ,在食品防腐保鲜中起重要作用 [2 ] 。细菌素的含义可以这样理解。细菌素是由某些细菌在代谢过程中通过核糖体合…  相似文献   

10.
瑞士乳杆菌M14-1发酵上清液经硫酸盐沉淀后得到粗蛋白提取物,再经离子交换、C18固相萃取进行进一步纯化后得到高纯度的纯化产物。研究细菌素M14-1酶敏感性、酸碱稳定性、热稳定性、抑菌谱以及细菌素产量与菌株生长关系。研究发现细菌素M14-1对蛋白酶K、胰蛋白酶、胃蛋白酶敏感,对过氧化氢酶不敏感。该细菌素热稳定性较差,121℃处理15 min后,活性下降。细菌素M14-1在pH2.0~10.0内具有抑菌活性。抑菌谱结果表明细菌素M14-1抑菌谱较窄,仅对单增李斯特氏菌有较好的抑制效果。瑞士乳杆菌M14-1在发酵16h后达到稳定期,而细菌素M14-1最佳收获时间为瑞士乳杆菌M14-1发酵12 h后。  相似文献   

11.
Plantaricin EF and JK are both two-peptide bacteriocins produced by Lactobacillus plantarum C11. The mechanism of plantaricin EF and JK action was studied on L. plantarum 965 cells. Both plantaricins form pores in the membranes of target cells and dissipate the transmembrane electrical potential (Deltapsi) and pH gradient (DeltapH). The plantaricin EF pores efficiently conduct small monovalent cations, but conductivity for anions is low or absent. Plantaricin JK pores show high conductivity for specific anions but low conductivity for cations. These data indicate that L. plantarum C11 produces bacteriocins with complementary ion selectivity, thereby ensuring efficient killing of target bacteria.  相似文献   

12.
Fructo- (FOS) and galacto-oligosaccharides have been used to promote the growth of probiotics, mainly those from Lactobacillus genus. However, only few reports have evaluated the effect of prebiotics on bacteriocins activity and production. In this work, we characterized the effect of FOS supplementation on the growth, lactic and acetic acids production, and antimicrobial activity of crude extracts obtained from Lactobacillus strains isolated from ensiled corn and molasses. Seven out of 28 isolated Lactobacillus, belonging to Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus brevis, showed antimicrobial activity against Listeria innocua. Among them, the strain L. plantarum LE5 showed antimicrobial activity against Listeria monocytogenes and Enteroccocus faecalis; while the L. plantarum LE27 strain showed antimicrobial effect against L. monocytogenes, E. faecalis, Escherichia coli and Salmonella enteritidis. This antimicrobial activity in most of the cases was obtained only after FOS supplementation. In summary, these results show the feasibility to increase the antimicrobial activity of Lactobacillus bacteriocins by supplementing the growth medium with FOS.  相似文献   

13.
Optimization of bacteriocin production by Lactobacillus plantarum LPCO10 was explored by an integral statistical approach. In a prospective series of experiments, glucose and NaCl concentrations in the culture medium, inoculum size, aeration of the culture, and growth temperature were statistically combined using an experimental 2(3)(5-2) fractional factorial two-level design and tested for their influence on maximal bacteriocin production by L. plantarum LPCO10. After the values for the less-influential variables were fixed, NaCl concentration, inoculum size, and temperature were selected to study their optimal relationship for maximal bacteriocin production. This was achieved by a new experimental 3(2)(3-1) fractional factorial three-level design which was subsequently used to build response surfaces and analyzed for both linear and quadratic effects. Results obtained indicated that the best conditions for bacteriocin production were shown with temperatures ranging from 22 to 27 degrees C, salt concentration from 2.3 to 2.5%, and L. plantarum LPCO10 inoculum size ranging from 10(7.3) to 10(7.4) CFU/ml, fixing the initial glucose concentration at 2%, with no aeration of the culture. Under these optimal conditions, about 3.2 x 10(4) times more bacteriocin per liter of culture medium was obtained than that used to initially purify plantaricin S from L. plantarum LPCO10 to homogeneity. These results indicated the importance of this study in obtaining maximal production of bacteriocins from L. plantarum LPCO10 so that bacteriocins can be used as preservatives in canned foods.  相似文献   

14.
Bacteriocins ST194BZ and ST23LD, produced by Lactobacillus plantarum, inhibit Gram-positive and Gram-negative bacteria. Images obtained by atomic force microscopy showed clear signs of membrane damage of Lactobacillus sakei, accompanied by the leakage of DNA and beta-galactosidase. Adsorption of the bacteriocins to cells was increased when cells were treated with buffers at pH values above neutral. An increase in bacteriocin ST194BZ adsorption to cells of Enterococcus sp. and L. sakei was observed with an increase in incubation temperatures, but at different rates for the two species. Treatment of the two species with various inorganic salts and solvents gave different results regarding the adsorption of the two bacteriocins. In general, pre-treatment of the two sensitive cells with Triton X-100, Triton X-114 and chloroform increased the adsorption of the two bacteriocins. Increased adsorption of bacteriocin ST23LD to L. sakei was recorded when the cells were pre-treated with Tris and NH4-citrate. Treatment of Enterococcus sp. and L. sakei with Na-EDTA and SDS decreased the adsorption of the two bacteriocins. Variable results were recorded with inorganic salts.  相似文献   

15.
We have constructed vectors for inducible expression of genes in Lactobacillus sakei and Lactobacillus plantarum. The key elements of these vectors are a regulatable promoter involved in the production of the bacteriocins sakacin A and sakacin P and the genes encoding the cognate histidine protein kinase and response regulator that are necessary to activate this promoter upon induction by a peptide pheromone. The vectors are built up of cassettes that permit easy exchange of all parts through restriction enzyme digestion and ligation. Using beta-glucuronidase as a reporter enzyme, variants of these vectors were compared with each other, and with a corresponding system based on genes involved in the production of nisin. Several of the new vectors permitted tightly controlled and efficient expression of beta-glucuronidase in both L. sakei and L. plantarum.  相似文献   

16.
The probiotic characteristics of Lactobacillus brevis BG18 and Lb. plantarum BG33, isolated from traditional Turkish Tulum cheese were assessed. These two bacteriocinproducer strains exhibited good probiotic characteristics such as resistance in media containing 0.3% bile salt, pepsin (3 mg mL?1), and pancreatine (1 mg mL?1) as well as acid resistance at pH 2. They were also adhered to Caco-2 epithelial cells in a manner comparable to Escherichia coli LMG3083 (ETEC) and Salmonella Typhimurium SL1344. The strains produced a heat-stable antimicrobial compound that was shown to be proteinaceous in nature, and therefore, referred to as bacteriocins. The bacteriocins were able to inhibit growth of a number grampositive bacteria such as Listeria monocytogenes, Clostridium botulinum, Staphylococcus aureus and Bacillus cereus. Tricine-SDS-PAGE of the active fraction resulted in single bands with estimated molecular masses of 2.5 kDA and 2.7 kDA for Lb. brevis BG18 and Lb. plantarum BG33 bacteriocins, respectively.  相似文献   

17.
Twenty-six strains of Lactobacillus plantarum isolated from green olive fermentations were tested for cross-antagonistic activities in an agar drop diffusion test. Cell-free supernatants from four of these strains were shown to inhibit the growth of at least one of the L. plantarum indicator strains. L. plantarum LPCO10 provided the broadest spectrum of activity and was selected for further studies. The inhibitory compound from this strain was active against some gram-positive bacteria, including clostridia and propionibacteria as well as natural competitors of L. plantarum in olive fermentation brines. In contrast, no activity against gram-negative bacteria was detected. Inhibition due to the effect of organic acids, hydrogen peroxide, or bacteriophages was excluded. Since the inhibitory activity of the active supernatant was lost after treatment with various proteolytic enzymes, this substance could be classified as a bacteriocin, designated plantaricin S. Plantaricin S was also sensitive to glycolytic and lipolytic enzymes, suggesting that it was a glycolipoprotein. It exhibited a bactericidal and nonbacteriolytic mode of action against indicator cells. This bacteriocin was heat stable (60 min at 100 degrees C), active in a pH range of 3.0 to 7.0, and also stable in crude culture supernatants during storage. Ultrafiltration studies indicated that plantaricin S occurred as multimolecular aggregates and that the size of the smallest active form is between 3 and 10 kDa. In sodium dodecyl sulfate-polyacrylamide gels, plantaricin S migrated as a peptide of ca. 2.5 kDa. Maximum production of plantaricin S was obtained in a fermentor system in unregulated pH and log-phase cultures of L. plantarum LPCO10 in MRS broth plus 4% NaCl. In these culture conditions, a second bacteriocin (designated plantaricin T) was produced in late-stationary-phase cultures of L. plantarum LPCO10. On the basis of its biological activity, its sensitivity to various enzymes, and its molecular weight (lower than that of plantaricin S) as assessed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, plantaricin T appeared different from plantaricin S. Curing experiments with L. plantarum LPCO10 resulted in the appearance of variants that no longer produced either of the two bacteriocins but that were still immune to both of them.  相似文献   

18.
Fifty-two strains belonging to the Lactobacillus plantarum species group were identified and typed. They represented 32 clones of Lactobacillus plantarum and 7 clones of Lactobacillus pentosus. Sensitivity of all strains towards bacteriocins of four different producer strains was investigated using a deferred inhibition test (DIT). Substantial intra-specific variation in sensitivity of clones was observed towards bacteriocinogenic lactic acid bacteria producing nisin ( Lactococcus lactis ATCC 11454) or pediocin PA-1 ( Pediococcus acidilactici PAC-1.0), while none of the strains were sensitive towards the two remaining bacteriocin producers. The minimum inhibitory concentration (MIC) of nisin towards selected strains confirmed the DIT results. No correlation between the susceptibility of fourteen selected strains towards nisin and an array of antibiotics was found. The present study indicates that the variation in bacteriocin-sensitivity within target species might be a potential limitation for the application of bacteriocins as biopreservatives.  相似文献   

19.
Traditional fermentation of cassava is dominated by a lactic acid bacteria (LAB) population. Fermentation is important for improving product flavour and aroma as well as safety, especially by reduction of its toxic cyanogenic glucosides. The production of Gari from cassava in Benin typically occurs on a household or small industrial scale, and consequently suffers from inconsistent product quality and may not always be safe for consumption. Therefore, the diversity of LAB from a typical cassava fermentation for the preparation of Gari, and their technologically relevant characteristics were investigated with a view towards selection of appropriate starter cultures. A total of 139 predominant strains isolated from fermenting cassava were identified using phenotypic tests and genotypic methods such as rep-PCR and RAPD-PCR. DNA-DNA hybridisation and sequencing of the 16S rRNA genes were done for selected strains. Lactobacillus plantarum was the most abundantly isolated species (54.6% of isolates), followed by Leuconostoc fallax (22.3%) and Lactobacillus fermentum (18.0%). Lactobacillus brevis, Leuconostoc pseudomesenteroides and Weissella paramesenteroides were sporadically isolated. The L. plantarum strains were shown to be better acid producers and capable of faster acid production than the L. fallax or L. fermentum strains. The incidence of beta-glucosidase (linamarase) activity was also highest among strains of this species. Production of antagonistic substances such as H2O2 and bacteriocins, however, was more common among L. fallax and L. fermentum strains. Strains of all three species were capable of utilising the indigestible sugars raffinose and stachyose. Therefore, a starter culture containing a mixture of strains from all three species was recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号