首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
目的 探讨一组多重耐药肺炎克雷伯菌(MDR-KPN)中获得性耐药相关基因和可移动遗传元件遗传标记的存在状况以及二者的相关性.方法 收集2008年8月至2010年5月浙江省杭州市和湖州市6所医院共47株MDR-KPN,采用聚合酶链反应(PCR)的方法分析74种获得性耐药基因和24种可移动遗传元件遗传标记,并用指标聚类分析(SPSS法)分析获得性耐药相关基因和可移动遗传元件遗传标记的相关性.结果 47株MDR-KPN共检出5种β-内酰胺类获得性耐药基因、6种氨基糖苷类获得性耐药基因、3种喹诺酮类获得性耐药基因、6种其他获得性耐药基因、1种整合子遗传标记、2种转座子遗传标记、4种插入序列遗传标记、2种接合性质粒遗传标记和1种噬菌体原标记;指标聚类分析(SPSS法)将上述阳性检出基因分成A、B两大簇.结论 指标聚类分析提示获得性耐药相关基因和可移动遗传元件密切相关;由Ⅰ类整合子( intI1)、插入序列(IS26、ISEcp1、ISKpn6)、耐药质粒(trbC)介导的TEM-1和KPC是本组菌株的特征.在肺炎克雷伯菌中做指标聚类分析为国内首次报道.  相似文献   

2.
目的 调查一组耐药鲍曼不动杆菌菌株间的亲缘关系.方法 收集2010年1月至2010年12月浙江某医院ICU患者痰液标本中分离的耐药鲍曼不动杆菌共20株,采用聚合酶链反应(PCR)的方法分析3种与耐药相关的看家基因(carO、gyrA、parC)和55种水平转移获得与β-内酰胺类、氨基糖苷类、喹诺酮类耐药相关基因以及12种接合性质粒、转座子、插入序列、整合子等可移动遗传元件遗传标记,再对检测结果作样本聚类分析.结果 20株耐药鲍曼不动杆菌共检出3种与耐药相关的看家基因carO、gyrA、parC,4种获得性β-内酰胺类耐药基因(TEM-1、ADC-30、ADC-60、OXA-23),5种获得性氨基糖苷类耐药基因[aac(3)-Ⅰ、aac(6')-Ⅰ b、ant(3”)-Ⅰ、aph(3’)-Ⅰ、armA],2种抗菌制剂外排泵基因(adeB、qacE△1),5种可移动遗传元件的遗传标记(int Ⅰ 1、tnpU、tnp513、IS26、ISaba1).样本聚类分析提示,20株耐药鲍曼不动杆菌可分为A与B二个簇,A簇群均为多耐药(MDR)株;A簇群又可分为A1(ADC-60阳性)与A2簇群(ADC-30阳性),均为克隆传播.B簇群均为泛耐药(PDR)株,除8号株外为克隆传播.结论 MDR和PDR菌株中均存在克隆传播.获得菌株之间的亲缘关系对院内感染实时监测和控制院内感染意义重大.  相似文献   

3.
目的 了解多重耐药肺炎克雷伯菌的耐药基因存在状况和遗传学背景。方法 聚合酶链反应(RCR)法对多重耐药的肺炎克雷伯菌进行β-内酰胺酶基因、氨基糖苷类修饰酶基因、质粒AmpC酶基因、qacEΔ1-sull耐消毒剂和磺胺基因、整合子遗传标记(整合酶基因)、Tn21/Tn501转座子遗传标记(汞离子还原酶基因)检测。结果 TEM、SHV型β-内酰胺酶基因, DHA型质粒AmpC酶基因,aac(6′)-1型氮基糖苷类修饰酶基因,qacEΔ1-sul1耐消毒剂和磺胺基因,整合子遗传标记(intI1整合酶基因),Tn21/Tn501转座子遗传标记(merA汞离子还原酶基因)检测阳性。结论 多重耐药肺炎克雷伯菌存在多种耐药基因和Ⅰ类整合子、Tn21/Tn501转座子。  相似文献   

4.
目的了解20株泛耐药鲍氏不动杆菌的菌株亲缘性。方法完成该组泛耐药鲍氏不动杆菌2种与耐药相关的看家基因和54种水平转移获得与β-内酰胺类、氨基糖苷类、喹诺酮类耐药相关基因以及13种接合性质粒、转座子、插入序列、整合子等可移动遗传元件遗传标记检测,并对检测结果作样本聚类分析。结果20株泛耐药鲍氏不动杆菌已经发生演化,并存在2个克隆传播:1-4—6号菌株和2—5—7—8—9—10—11—12—13—14—15-16—17—18-19号菌株。结论与耐药相关的看家基因和水平转移获得的耐药基因均为显性遗传,本研究耐药菌所观察的表型与之相对应,为追溯耐药菌传播途径提供了方便。  相似文献   

5.
目的 全面了解2株耐药产气肠杆菌对β-内酰胺类、氨基糖苷类、喹诺酮类的耐药机制.方法 2株耐药产气肠杆菌:zjm001株和zjm002株,分离自2012年3月一家三级甲等医院住院患者送检的血液标本,做gyrA和parC基因扩增、测序、GenBank比对确认菌种,再用PCR法分析39种β-内酰胺类药物获得性耐药基因、14种氨基糖苷类药物获得性耐药基因、7种喹诺酮类耐药相关基因、11种可移动遗传元件标记.结果 zjm001株的β-内酰胺类耐药基因检出CTX-M-3,氨基糖苷类耐药基因检出ant(3”)-Ⅰ,喹诺酮类耐药基因检出gyrA突变,可移动遗传元件检出int Ⅰ 1、ISEcp1、IS26、IS903;zjm002株的β-内酰胺类耐药基因检出ACT-1、CMY-2,喹诺酮类耐药基因检出gyrA突变.2株耐药产气肠杆菌的gyrA基因序列均为新变异型,GenBank登录号分别为:JX268598,JX273641.结论 2株耐药产气肠杆菌的耐药基因与耐药表型相符.在耐药产气肠杆菌中发现DNA旋转酶A亚单位基因gyrA新变异型是国内首次报道.  相似文献   

6.
目的了解血流感染肺炎克雷伯菌的耐药机制及其耐药传播机制,为临床医院感染控制提供理论依据。方法收集南昌大学第一附属医院2012年3月至2013年9月住院患者的血液培养标本中分离获得的肺炎克雷伯菌86株,应用PCR扩增方法检测耐药基因,MLST和质粒接合试验分析其耐药传播方式。结果超广谱β-内酰胺酶基因中有26株KPC基因阳性,2株IMP基因阳性,4株VIM基因阳性,1株NDM-1基因阳性;整合子基因中有4株int基因阳性,int基因阳性的4株整合子可变区基因均为阳性;氨基糖苷类耐药基因中有22株acc6′-Ib基因阳性;喹诺酮类耐药基因中有48株qnrA基因阳性,20株qnrS基因阳性,8株qnrB基因阳性。MLST结果显示34株(39.5%)为ST395型,是主要基因型。氨基糖苷类耐药基因阳性菌株接合成功7株;喹诺酮类耐药基因阳性菌株接合成功15株。结论血流感染肺炎克雷伯菌主要以携带耐碳青霉烯酶基因和耐喹诺酮类基因为主,耐药传播机制多种,包括克隆传播和质粒介导传播。  相似文献   

7.
细菌可移动遗传元件包括噬菌体、质粒、转座子、插入序列、整合子、基因组岛(genomic island and genomic islet)等,其中接合性质粒、转座子、整合子及基因组岛等是与抗生素抗性有关的元件,可以在同种甚至于不同种菌株间水平转移,加速了临床上耐药及多重耐药菌株的产生。综述了细菌与抗生素抗性有关的可移动遗传元件的种类、特征及转移机制的研究进展。  相似文献   

8.
细菌遗传元件水平转移与抗生素抗性研究进展   总被引:2,自引:0,他引:2  
细菌可移动遗传元件包括噬菌体、质粒、转座子、插入序列、整合子、基因组岛(genomic island and genomic islet)等,其中接合性质粒、转座子、整合子及基因组岛等是与抗生素抗性有关的元件,可以在向种甚至于不同种菌株间水平转移,加速了临床上耐药及多重耐药菌株的产生。综述了细菌与抗生素抗性有关的可移动遗传元件的种类、特征及转移机制的研究进展。  相似文献   

9.
I类整合子与产ESBLs肺炎克雷伯菌多重耐药关系的研究   总被引:1,自引:0,他引:1  
目的了解产ESBLs肺炎克雷伯菌的整合子存在状况。方法用PCR方法扩增Ⅰ类整合酶基因,经电泳后检测扩增产物。结果72株产ESBLs肺炎克雷伯菌中检测出Ⅰ类整合子67株,检出率为93.0%,Ⅰ类整合子阳性菌对氨基糖苷类、喹诺酮类及头孢菌素类药物表现出较高的耐药,其多重耐药率明显高于Ⅰ类整合子阴性菌株(P〈0.05)。结论Ⅰ类整合子广泛地存在产ESBLs肺炎克雷伯菌中,Ⅰ类整合子对细菌多重耐药性的产生和传播起着重要作用。  相似文献   

10.
多重耐药伤寒沙门菌耐药基因的研究   总被引:1,自引:0,他引:1  
目的 检测多重耐药伤寒沙门菌对抗菌药物的敏感性及其耐药基因定位。方法 随机选取实验室保存的5株耐药菌和1株敏感菌,用纸片扩散法检测对12种抗菌药物的敏感性。用利舍平抑制试验检测菌株是否存在药物外排系统。PCR法检测TEM型β-内酰胺酶基因、aac(6′)-Ⅰb和aac3-Ⅱ型氨基糖苷类修饰酶基因、qacEΔ1-sul1耐消毒剂和磺胺基因、catA和catB氯霉素乙酰基转移酶基因以及cmlA氯霉素外排泵蛋白基因等7种耐药基因。结果 5株多重耐药菌对氨苄西林、哌拉西林、头孢呋辛、头孢西丁、卡那霉素、庆大霉素、复方磺胺甲噁唑及氯霉素等8种抗菌药物全部耐药,对美罗培南、头孢哌酮、头孢吡肟全部敏感;对头孢噻吩中度敏感。1株无质粒pRST98的菌株对上述药物全部敏感。利舍平抑制试验均为阴性。4株耐药菌TEM型β-内酰胺酶基因检测为阳性。全部耐药菌株aac3-Ⅱ、qacEΔ1-sul1、catA基因均为阳性,而aac(6′)-Ⅰb、catB和cmlA基因均为阴性。 结论 多重耐药伤寒沙门菌质粒pRST98上同时存在多种耐药基因, 是导致菌株同时对多种结构各异的抗生素耐药的原因。  相似文献   

11.
肺炎克雷伯菌是目前临床上最主要的耐药致病菌之一,对人类健康造成了很大威胁.近年来,细菌耐药成为治疗肺炎克雷伯菌感染的主要难题,尤其是高毒力、高耐药性肺炎克雷伯菌的出现对临床工作造成了巨大挑战,而研究表明其耐药基因和毒力基因主要由可移动遗传元件携带而传播.因此,为了更好地认识及防控肺炎克雷伯菌感染,本文对肺炎克雷伯菌基因...  相似文献   

12.
Antibiotic-resistant Gram-positive bacteria are responsible for morbidity and mortality in healthcare environments. Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus and Streptococcus pneumoniae can all exhibit clinically relevant multidrug resistance phenotypes due to acquired resistance genes on mobile genetic elements. It is possible that clinically relevant multidrug-resistant Clostridium difficile strains will appear in the future, as the organism is adept at acquiring mobile genetic elements (plasmids and transposons). Conjugative transposons of the Tn916/Tn1545 family, which carry major antibiotic resistance determinants, are transmissible between these different bacteria by a conjugative mechanism during which the elements are excised by a staggered cut from donor cells, converted to a circular form, transferred by cell-cell contact and inserted into recipient cells by a site-specific recombinase. The ability of these conjugative transposons to acquire additional, clinically relevant antibiotic resistance genes importantly contributes to the emergence of multidrug resistance.  相似文献   

13.
Molecular mechanisms of antibacterial multidrug resistance   总被引:16,自引:0,他引:16  
Alekshun MN  Levy SB 《Cell》2007,128(6):1037-1050
Treatment of infections is compromised worldwide by the emergence of bacteria that are resistant to multiple antibiotics. Although classically attributed to chromosomal mutations, resistance is most commonly associated with extrachromosomal elements acquired from other bacteria in the environment. These include different types of mobile DNA segments, such as plasmids, transposons, and integrons. However, intrinsic mechanisms not commonly specified by mobile elements-such as efflux pumps that expel multiple kinds of antibiotics-are now recognized as major contributors to multidrug resistance in bacteria. Once established, multidrug-resistant organisms persist and spread worldwide, causing clinical failures in the treatment of infections and public health crises.  相似文献   

14.
Tetracycline resistance genes of the M class,tet(M), are typically found on mobile genetic elements as the conjugative transposons of gram-positive bacteria. By comparing the sequences of eight differenttet(M) genes (fromEnterococcus faecalis, Streptococcus pneumoniae, Staphylococcus aureus, Ureaplasma urealyticum,andNeisseria), a mosaic structure was detected which could be traced to two distinct alleles. The two alleles displayed a divergence of 8% and a different G/C content. The block structure of these genes provides evidence for the contribution of homologous recombination to the evolution and the heterogeneity of thetet(M) locus. Unlike described cases of chromosomally located mosaic loci,tet(M) is a relatively recently acquired determinant in the species examined and it would appear that mosaic structure withintet(M) has evolved after acquisition of the gene by the mobile genetic elements upon which it is located.  相似文献   

15.
Mobile genetic elements (MGEs) drive genetic transfers between bacteria using mechanisms that require a physical interaction with the cellular envelope. In the high-priority multidrug-resistant nosocomial pathogens (ESKAPE), the first point of contact between the cell and virions or conjugative pili is the capsule. While the capsule can be a barrier to MGEs, it also evolves rapidly by horizontal gene transfer (HGT). Here, we aim at understanding this apparent contradiction by studying the covariation between the repertoire of capsule genes and MGEs in approximately 4,000 genomes of Klebsiella pneumoniae (Kpn). We show that capsules drive phage-mediated gene flow between closely related serotypes. Such serotype-specific phage predation also explains the frequent inactivation of capsule genes, observed in more than 3% of the genomes. Inactivation is strongly epistatic, recapitulating the capsule biosynthetic pathway. We show that conjugative plasmids are acquired at higher rates in natural isolates lacking a functional capsular locus and confirmed experimentally this result in capsule mutants. This suggests that capsule inactivation by phage pressure facilitates its subsequent reacquisition by conjugation. Accordingly, capsule reacquisition leaves long recombination tracts around the capsular locus. The loss and regain process rewires gene flow toward other lineages whenever it leads to serotype swaps. Such changes happen preferentially between chemically related serotypes, hinting that the fitness of serotype-swapped strains depends on the host genetic background. These results enlighten the bases of trade-offs between the evolution of virulence and multidrug resistance and caution that some alternatives to antibiotics by selecting for capsule inactivation may facilitate the acquisition of antibiotic resistance genes (ARGs).

A study of how the complex interaction between capsules and mobile genetic elements shapes gene flow in populations of Klebsiella pneumoniae reveals that capsule inactivation by phage pressure facilitates its subsequent re-acquisition by conjugation, and this loss and re-gain process influences the gene flow towards other lineages whenever it leads to serotype changes.  相似文献   

16.
S Ramadhani  SR Mousavi  M Talebi 《Gene》2012,498(2):177-182
We cloned a gene, kexD, that provides a multidrug-resistant phenotype from multidrug-resistant Klebsiella pneumoniae MGH78578. The deduced amino acid sequence of KexD is similar to that of the inner membrane protein, RND-type multidrug efflux pump. Introduction of the kexD gene into Escherichia coli KAM32 resulted in a MIC that was higher for erythromycin, novobiocin, rhodamine 6G, tetraphenylphosphonium chloride, and ethidium bromide than that of the control. Intracellular ethidium bromide levels in E. coli cells carrying the kexD gene were lower than that in the control cells under energized conditions, suggesting that KexD is a component of an energy-dependent efflux pump. RND-type pumps typically consist of three components: an inner membrane protein, a periplasmic protein, and an outer membrane protein. We discovered that KexD functions with a periplasmic protein, AcrA, from E. coli and K. pneumoniae, but not with the periplasmic proteins KexA and KexG from K. pneumoniae. KexD was able to utilize either TolC of E. coli or KocC of K. pneumoniae as an outer membrane component. kexD mRNA was not detected in K. pneumoniae MGH78578 or ATCC10031. We isolated erythromycin-resistant mutants from K. pneumoniae ATCC10031, and some showed a multidrug-resistant phenotype similar to the drug resistance pattern of KexD. Two strains of multidrug-resistant mutants were investigated for kexD expression; kexD mRNA levels were increased in these strains. We conclude that changing kexD expression can contribute to the occurrence of multidrug-resistant K. pneumoniae.  相似文献   

17.
Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We have characterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably thermotolerant providing a conceivable explanation of its persistence in the hospital environment. This marked phenotype is mediated by a novel type of Clp ATPase, designated ClpK. The clpK gene is encoded by a conjugative plasmid and we find that the clpK gene alone renders an otherwise sensitive E. coli strain resistant to lethal heat shock. Furthermore, one third of a collection of nosocomial K. pneumoniae isolates carry clpK and exhibit a heat resistant phenotype. The discovery of ClpK as a plasmid encoded factor and its profound impact on thermal stress survival sheds new light on the biological relevance of Clp ATPases in acquired environmental fitness and highlights the challenges of mobile genetic elements in fighting nosocomial infections.  相似文献   

18.
The spread of multidrug-resistant strains of Klebsiella pneumoniae in hospitals is of concern to clinical microbiologists, health care professionals, and physicians because of the impact infections caused by these bacteria have in causing morbidity and mortality. Clinical isolates of K.?pneumoniae have been found to show resistance to third-generation cephalosporins as a result of acquiring extended-spectrum β-lactamase-producing genes, such as bla(CTX-M). Since little is known about the mechanisms of antibiotic resistance observed in Kasserine hospital, Tunisia, this study was undertaken to investigate the mechanisms by which clinical isolates of K.?pneumoniae resist β-lactam antibiotics. Twelve strains of K.?pneumoniae were collected from patients admitted to Kasserine hospital; these isolates showed multiresistance phenotypes. Molecular genetics investigations using polymerase chain reaction, S1 digestion, and pulsed-field gel electrophoresisshowed that bla(CTX-M-15) in association with ISEcp1 is responsible for the resistance of these strains to third-generation cephalosporins. It has been determined that bla(CTX-M-15) is chromosomally mediated and plasmid mediated, which alarming need for infection control to prevent the outbreak of such a resistance mechanism.  相似文献   

19.
Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridization analyses. Their genome contents were compared with those of coexisting sporadic strains matched by serotype, geographic and temporal distribution, and host species origin. These paired comparisons revealed that epidemic strains of S. enterica had specific genes and gene regions that were shared by isolates of the same subtype. Most of these gene sequences are related to mobile genetic elements, including phages, plasmids, and plasmid-like and transposable elements, and some genes may encode proteins conferring growth or survival advantages. The emergence of epidemic MDR strains may therefore be associated with the presence of fitness-associated genetic factors in addition to their antimicrobial resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号