首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Surfactant protein D (SP-D) plays important roles in innate immunity including the defense against bacteria, fungi, and respiratory viruses. Because SP-D specifically interacts with neutrophils that infiltrate the lung in response to acute inflammation and infection, we examined the hypothesis that the neutrophil-derived serine proteinases (NSPs): neutrophil elastase, proteinase-3, and cathepsin G degrade SP-D. All three human NSPs specifically cleaved recombinant rat and natural human SP-D dodecamers in a time- and dose-dependent manner, which was reciprocally dependent on calcium concentration. The NSPs generated similar, relatively stable, disulfide cross-linked immunoreactive fragments of approximately 35 kDa (reduced), and sequencing of a major catheptic fragment definitively localized the major sites of cleavage to a highly conserved subregion of the carbohydrate recognition domain. Cleavage markedly reduced the ability of SP-D to promote bacterial aggregation and to bind to yeast mannan in vitro. Incubation of SP-D with isolated murine neutrophils led to the generation of similar fragments, and cleavage was inhibited with synthetic and natural serine proteinase inhibitors. In addition, neutrophils genetically deficient in neutrophil elastase and/or cathepsin G were impaired in their ability to degrade SP-D. Using a mouse model of acute bacterial pneumonia, we observed the accumulation of SP-D at sites of neutrophil infiltration coinciding with the appearance of approximately 35-kDa SP-D fragments in bronchoalveolar lavage fluids. Together, our data suggest that neutrophil-derived serine proteinases cleave SP-D at sites of inflammation with potential deleterious effects on its biological functions.  相似文献   

2.
In the nanomolar enzyme and inhibitor concentration range, 1 mol of mucus proteinase inhibitor (MPI) inhibits 1 mol of neutrophil elastase, cathepsin G, trypsin, and chymotrypsin. In the micromolar concentration range, the enzyme:inhibitor binding stoichiometry is still 1:1 for elastase but shifts to 2:1 for the three other proteinases. These data could be confirmed by three nonenzymatic methods: (i) fluorescence anisotropy measurements of mixtures of proteinases with 5-dimethylaminonaphthalene-1-sulfonylated or fluoresceinylated MPI, (ii) absorption spectrocospy of fluorescein-MPI-proteinase complexes isolated by gel filtration, (iii) analytical ultracentrifugation which showed that the molecular mass of the MPI-chymotrypsin complex is 56 kDa, whereas that of the MPI-elastase complex is 39 kDa. The binary MPI-elastase complex is unable to inhibit trypsin or cathepsin G. On the other hand, 1 mol of elastase displaces 2 mol of trypsin or cathepsin G from their ternary complexes with MPI.  相似文献   

3.
Human neutrophil cathepsin G from normal donors has been purified 82-fold using an isolation procedure which included sequential sodium chloride extraction, Aprotonin-Sepharose affinity chromatography, CM-cellulose ion-exchange chromatography, and AcA44 gel filtration chromatography. The inclusion of this last purification step was crucial for separating inactive lower molecular weight species from the active forms of neutrophil cathepsin G and resulted in a higher specific activity of the final preparation. SDS polyacrylamide gradient gel electrophoresis of the purified reduced protein demonstrated three discrete polypeptides of Mr 31,000, 30,000, and 29,500. Peptide analysis of tryptic digests indicated that these three polypeptides are structurally related to each other and represent microheterogeneity of the purified protein. The cathepsin G peptide maps were distinctly different from the peptide maps of neutrophil elastase. The apparent isoelectric points of these forms as determined by two-dimensional electrophoresis was approximately 8.0. Utilizing microsequencing techniques, the first 25 residues of normal neutrophil cathepsin G have been determined and shown to be identical (except for residue 11) with the sequence of 21 residues of cathepsin G isolated from leukemic myeloid cells. A high degree of homology was found when the amino-terminal regions of neutrophil cathepsin G, rat mast cell protease II (65%) and two human serine proteinases, factor D (52%) and neutrophil elastase (48%), were compared. A precipitating monospecific antiserum to cathepsin G was produced by repeated immunizations of guinea pigs. This antiserum has been used in immunoblotting experiments to demonstrate that the intracellular form(s) of this enzyme is the same approximate Mr as the purified enzyme, and to develop a solid-phase radioimmunoassay for measuring neutrophil cathepsin G in the range 5-50 ng/ml.  相似文献   

4.
Previous studies have established that mature neutrophils from the peritoneal cavity, blood, and bone marrow of beige (Chédiak-Higashi syndrome) mice essentially lack activities of two lysosomal proteinases: elastase and cathepsin G. There are, however, significant levels of each enzyme in early neutrophil precursors in bone marrow. In the present experiments, it was found that the addition of extracts from mature beige neutrophils to extracts of normal neutrophils or to purified human neutrophil elastase and cathepsin G resulted in a significant inhibition of elastase and cathepsin G G activities. 125I-Labeled human neutrophil elastase formed high molecular mass complexes at 64 and 52 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis when added to beige neutrophil extracts. The molecular masses of the inhibitor-125I-elastase complexes suggested that the molecular masses of the inhibitors are approximately 36 and 24 kDa, respectively. These results were confirmed by gel filtration on Superose 12 under nondenaturing conditions. Cathepsin G was inhibited only by the 36-kDa component. The inhibitors formed a covalent complex with the active sites of elastase and cathepsin G. No inhibitory activity was present in mature neutrophil extracts of genetically normal mice or in extracts of bone marrow of beige mice. These results thus represent an unusual example of an enzyme deficiency state caused by the presence of excess inhibitors. Inactivation of neutrophil elastase and cathepsin G in mature circulating and tissue neutrophils may contribute to the increased susceptibility of Chédiak-Higashi patients to infection.  相似文献   

5.
Cathepsin G, elastase, and proteinase 3 are serine proteinases released by activated neutrophils. Cathepsin G can cleave angiotensinogen to release angiotensin II, but this activity has not been previously reported for elastase or proteinase 3. In this study we show that elastase and proteinase 3 can release angiotensin I from angiotensinogen and release angiotensin II from angiotensin I and angiotensinogen. The relative order of potency in releasing angiotensin II by the three proteinases at equivalent concentrations is cathepsin G > elastase > proteinase 3. When all three proteinases are used together, the release of angiotensin II is greater than the sum of the release when each proteinase is used individually. Cathepsin G and elastase can also degrade angiotensin II, reactions which might be important in regulating the activity of angiotensin II. The release and degradation of angiotensin II by the neutrophil proteinases are reactions which could play a role in the local inflammatory response and wound healing.  相似文献   

6.
Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis.  相似文献   

7.
8.
A new method for isolation of leukocyte serine proteinases has been developed. Elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) have been isolated from dog neutrophils and purified to homogeneous state. The results of inhibitor analysis indicate that the enzymes belong to the group of serine proteinases. Some physical and chemical characteristics of the purified enzymes have been determined. The molecular weights of the enzymes are 24.5-26 kD for the elastase and 23.5-25.5 kD for the cathepsin G. The cathepsin G is a glycoprotein, while the elastase molecule lacks carbohydrate components. The cathepsin G exhibits a broad pH optimum of catalytic activity in the range of 7.0-9.0; the pH optimum for the elastase is 8.0-8.5. The Michaelis constant of the elastase for N-t-Boc-L-alanine p-nitrophenyl ester is 0.10 mM; the Michaelis constant of the cathepsin G for N-benzoyl-L-tyrosine ethyl ester is 0.42 mM.  相似文献   

9.
It has been found that two active in neutral medium thiol proteinases from bovine spleen, cathepsin L and cathepsin H, bring about rapid and irreversible inactivation of alpha 1-proteinase inhibitor (alpha 1PI)--one of the major plasma inhibitors of serine proteinases. The activity of the enzymes studied did not change upon the interaction with alpha 1PI. With stoichiometric proteinase/inhibitor ratio, the inactivation of alpha 1PI under the effect of cathepsin L was instantaneous, while under the effect of cathepsin H it occurred within 30-60 min. The products of alpha 1PI inactivation had an inhibitory effect on the rate of its reaction with cathepsin L. alpha 1PI inactivation under the action of cathepsin L and cathepsin H was accompanied by the decrease in the molecular mass of the inhibitor from 54 kDA to 46 kDa. This was, probably, caused by the hydrolysis of the peptide bond formed by NH2 group of threonine. The 46 kDa fragment did not undergo further degradation. It did not bind to immobilized trypsin but retained antigenic properties. The results obtained show that the limited proteolysis is a mechanism of the inhibitor inactivation. It is suggested that under some conditions thiol proteinases, upon their release from the cell, participate in the control of effective alpha 1PI concentration.  相似文献   

10.
Amino acid sequences of the human kidney cathepsins H and L   总被引:4,自引:0,他引:4  
The complete amino acid sequences of human kidney cathepsin H (EC 3.4.22.16) and human kidney cathepsin L (EC 3.4.22.15) were determined. Cathepsin H contains 230 residues and has an Mr of 25116. The sequence was obtained by sequencing the light, heavy and mini chain and the peptides produced by cyanogen bromide cleavage of the single-chain form of the enzyme. The glycosylated mini chain is a proteolytic fragment of the propeptide of cathepsin H. Human cathepsin L has 217 amino acid residues and an Mr of 23720. Its amino acid sequence was deduced from N-terminal sequences of the heavy and light chains and from the sequences of cyanogen bromide fragments of the heavy chain. The fragments were aligned by comparison with known sequences of cathepsins H and L from other species. Cathepsins H and L exhibit a high degree of sequence homology to cathepsin B (EC 3.4.22.1) and other cysteine proteinases of the papain superfamily.  相似文献   

11.
Gelatin zymography revealed the presence of proteolytic activity in conditioned medium (CM) from a serum-free, non-infected Spodoptera frugiperda, Sf9 insect cell culture. Two peptidase bands at about 49 and 39 kDa were detected and found to be proform and active form of the same enzyme. The 49-kDa form was visible on zymogram gels in samples of CM taken on days 4 and 5 of an Sf9 culture, while the 39-kDa form was seen on days 6 and 7. On basis of the inhibitor profile and substrate range, the enzyme was identified as an Sf9 homologue of cathepsin L, a papain-like cysteine peptidase. After lowering the pH of Sf9 CM to 3.5, an additional peptidase band at 22 kDa appeared. This peptidase showed the same inhibitor profile, substrate range and optimum pH (5.0) as the 39-kDa form, indicating that Sf9 cathepsin L has two active forms, at 39 and 22 kDa. Addition of the cysteine peptidase inhibitor E-64c to an Sf9 culture inhibited all proteolytic activities of Sf9 cathepsin L but did not influence the proliferation of Sf9 cells.  相似文献   

12.
13.
The mouse genes for the lysosomal cysteine proteinases cathepsin B, H, L, and S were mapped to Chromosomes (Chrs) 14, 9, 13, and 3, respectively. Two of the DNA probes used in this study detected an additional, independently segregating locus. The cathepsin B-specific probe hybridized to a locus on Chr 2, and the cathepsin H probe to a locus on the X Chr. These loci either correspond to pseudogenes or to cathepsin B- and cathepsin H-related genes. The four cysteine proteinases mapped in this study lie within known regions of conserved synteny between mouse and human chromosomes, when compared with the corresponding positions of their human homologs. Assuming that the genes of the cysteine proteinase gene family arose from a common ancestral gene, our results suggest that these four cysteine proteinases had been dispersed over different chromosomes before separation of mouse and human in evolution. Received: 22 August 1996 / Accepted: 20 November 1996  相似文献   

14.
Human mast cells can be divided into two subsets based on serine proteinase composition: a subset that contains the serine proteinases tryptase and chymase (MCTC), and a subset that contains only tryptase (MCT). In this study we examined both types of mast cells for two additional proteinases, cathepsin G and elastase, which are the major serine proteinases of neutrophils. Because human mast cell chymase and cathepsin G are both chymotrypsin-like proteinases, the properties of these enzymes were further defined to confirm their distinctiveness. Comparison of their N-terminal sequences showed 30% nonidentity over the first 35 amino acids, and comparison of their amino acid compositions demonstrated a marked difference in their Arg/Lys ratios, which was approximately 1 for chymase and 10 for cathepsin G. Endoglycosidase F treatment increased the electrophoretic mobility of chymase on SDS gels, indicating significant N-linked carbohydrate on chymase; no effect was observed on cathepsin G. Immunoprecipitation and immunoblotting with specific antisera to each proteinase revealed little, if any, detectable cross-reactivity. Immunocytochemical studies showed selective labelling of MCTC type mast cells by cathepsin G antiserum in sections of human skin, lung, and bowel. No labeling of mast cells by elastase antiserum was detected in the same tissues, or in dispersed mast cells from lung and skin. A protein cross-reactive with cathepsin G was identified in extracts of human skin mast cells by immunoblot analysis. This protein had a slightly higher Mr (30,000) than the predominant form of neutrophil cathepsin G (Mr 28,000), and could not be separated from chymase (Mr 30,000) by SDS gel electrophoresis because of the size similarity. Using casein, a protein substrate hydrolyzed at comparable rates by chymase and cathepsin G, it was shown that about 30% of the caseinolytic activity in mast cell extracts was sensitive to inhibitors of cathepsin G that had no effect on chymase. Hydrolytic activity characteristic of elastase was not detected in these extracts. These studies indicate that human MCTC mast cells may contain two different chymotrypsin-like proteinases: chymase and a proteinase more closely related to cathepsin G, both of which are undetectable in MCT mast cells. Neutrophil elastase, on the other hand, was not detected in human mast cells by our procedures.  相似文献   

15.
The action of three matrix metalloproteinases (MMPs), 72- and 95-kDa gelatinases (MMP-2 and MMP-9) and PUMP (MMP-7), and a cysteine proteinase, cathepsin B, were investigated on aggrecan the major proteoglycan of cartilage. All the enzymes cleaved aggrecan although the activity of the 95-kDa gelatinase was very low. Specific cleavage sites were investigated following incubation with a purified aggrecan G1-G2 domain fragment (150 kDa). Both gelatinases produced 110-kDa G2 and 56-kDa G1 products by a single cleavage at an Asn-Phe bond within the interglobular domain close to the G1 domain. This was similar to the action of stromelysin (MMP-3) (Fosang, A. J., Neame, P. J., Hardingham, T. E., Murphy, G., and Hamilton, J. A. (1991) J. Biol. Chem. 266, 15579-15582). Cathepsin B also produced two fragments from a single cleavage at a Gly-Val bond only three amino acids C-terminal to the metalloproteinase cleavage site. PUMP cleaved at the metalloproteinase Asn-Phe site, but in addition produced a low yield of a smaller G2 fragment (56 kDa) corresponding to cleavage between Asp441 and Leu442 (human sequence), within the interglobular domain, close to the G2 domain. The apparent difference in size between the two G2 fragments released by PUMP (110 and 56 kDa) was much greater than predicted from the peptide length between the cleavage sites (100 amino acids). However, keratanase digestion greatly reduced the size of the 110-kDa G2 fragment, while producing only a small reduction in size of the 56-kDa product, showing that there was approximately 30-40 kDa of keratan sulfate attached to the interglobular domain between the PUMP cleavage sites. This new structural information on aggrecan may account for the previously observed stiffness of the interglobular domains when viewed by rotary shadowing electron microscopy (Paulsson, M., Morgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D. G., Hardingham, T. E., Heinegard, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). These results show that in spite of a high keratan sulfate content the interglobular domain provides important sites for cleavage by different proteinases, including several members of the matrix metalloproteinase family.  相似文献   

16.
Limited proteolysis of T-kininogen by heterologous and homologous endopeptidases (bovine trypsin, human leukocyte elastase, rat submaxillary gland endopeptidase k, and rat mast cell chymase) produced similar fragmentation. Amino-terminal sequence analysis of whole T-kininogen lysates and purified proteolytic fragments identified four susceptible regions which contained all the preferential cleavage sites for these proteinases. Two of these susceptible regions were close to the junction between heavy chain cystatin-like domains, the third was in the kinin-containing region, and the fourth was close to the carboxyl terminus of the T-kininogen light chain. There was only one primary site for each proteinase in the kinin-containing region, which explains why catalytic amounts of these proteinases did not release immunoreactive kinin from this kininogen. However, preferential cleavage of T-kininogen close to the junction between cystatin-like domains released fragments which, provided they included cystatin-like domains 2 and/or 3, strongly inhibited papain and cathepsin L. The fragments were inhibitory even when parts of the amino-terminal ends of the domains were lacking. The highly conserved glycyl residue, thought to be involved in the inhibitory reactive site of cystatin-like inhibitors, was not required in purified domain 3 for inhibition of cathepsin L.  相似文献   

17.
Neutrophil elastase and cathepsin G are abundant intracellular neutrophil proteinases that have an important role in destroying ingested particles. However, when neutrophils degranulate, these proteinases are released and can cause irreparable damage by degrading host connective tissue proteins. Despite abundant endogenous inhibitors, these proteinases are protected from inhibition because of their ability to bind to anionic surfaces. Plasminogen activator inhibitor type-1 (PAI-1), which is not an inhibitor of these proteinases, possesses properties that could make it an effective inhibitor of neutrophil proteinases if its specificity could be redirected. PAI-1 efficiently inhibits surface-sequestered proteinases, and it efficiently mediates rapid cellular clearance of PAI-1-proteinase complexes. Therefore, we examined whether PAI-1 could be engineered to inhibit and clear neutrophil elastase and cathepsin G. By introducing specific mutations in the reactive center loop of wild-type PAI-1, we generated PAI-1 mutants that are effective inhibitors of both proteinases. Kinetic analysis shows that the inhibition of neutrophil proteinases by these PAI-1 mutants is not affected by the sequestration of neutrophil elastase and cathepsin G onto surfaces. In addition, complexes of these proteinases and PAI-1 mutants are endocytosed and degraded by lung epithelial cells more efficiently than either the neutrophil proteinases alone or in complex with their physiological inhibitors, alpha1-proteinase inhibitor and alpha1-antichymotrypsin. Finally, the PAI-1 mutants were more effective in reducing the neutrophil elastase and cathepsin G activities in an in vivo model of lung inflammation than were their physiological inhibitors.  相似文献   

18.
Native laminin-nidogen complex isolated from mouse Engelbreth-Holm-Swarm tumor was treated with purified cathepsin G or leucocyte elastase, two neutral serine proteases which play a role in inflammatory processes accompanied by degradation of basement membranes. Both enzymes were found to be more active than porcine pancreatic elastase. In the absence of Ca2+, laminin fragments produced by leucocyte elastase resembled those formed by the pancreatic enzyme but at physiological concentrations of Ca2+ cleavage by cathepsin G was much more selective. Initially laminin (900 kDa) was cleaved at two major sites only with similar rates leading to three fragments. Fragment C1-4 (about 550 kDa) comprises the intact three short arms of the molecule and fragment C8-9 (about 350 kDa) contains the entire triple-coiled region by which its three chains are assembled and the major part of the terminal globular domain of the long arm. The remaining C-terminal region of this domain was recovered as fragment C3 of about 50 kDa. Stabilization against proteolytic attack was restricted to the region of fragment C1-4 and only this fragment exhibited strong Ca2+ dependent self-association similar to that of intact laminin or of its complex with nidogen. The associative properties of fragment C1-4 were dramatically diminished upon removal of the tip of one of the short arms comprising fragment 4. In addition, this provides a clear assignment of the important laminin function to a distinct domain in one of its short arms. The new fragment C8-9 may be employed for exploring the properties and possible functions of the upper long-arm region which so far has not been available as a fragment.  相似文献   

19.
The precursor lympho-epithelial Kazal-type-related inhibitor (LEKTI), containing two Kazal-type and 13 nonKazal-type domains, is an efficient inhibitor of multiple serine proteinases, among them plasmin, subtilisin A, cathepsin G, elastase, and trypsin. To gain insight into the structure and function of some of these domains, a portion of the cDNA coding for LEKTI domains 6-9' was cloned and expressed in Sf9 cells using the baculovirus expression vector system (BEVS). Through a single purification step using a Co2+ column, 3-4 mg of purified recombinant LEKTI-domains 6-9' (rLEKTI6-9') with the predicted molecular mass of 34.6 kDa was obtained from the cell pellet of a 1-L culture. Unlike full-length LEKTI, rLEKTI6-9' inhibited trypsin and subtilisin A but not plasmin, cathepsin G, or elastase. The inhibition of trypsin and subtilisin A by rLEKTI6-9' occurred through a noncompetitive mechanism, with inhibitory constants (Ki) of 356 +/- 12 and 193 +/- 10 nM, respectively. On the basis of the Ki values, rLEKTI6-9' was determined to be a more potent trypsin inhibitor and a less potent subtilisin A inhibitor than the full-length LEKTI. In contrast to LEKTI domains 6-9', recombinant LEKTI domain 6 does not inhibit subtilisin A but competitively inhibited trypsin with a Ki of 200 +/- 10 nM. Taking LEKTI6-9' as an example, the BEVS should facilitate the structure-function analysis of naturally occurring processed LEKTI forms that have physiological relevance.  相似文献   

20.
Oleic acid binds in a saturable fashion to human plasma fibronectin (FN). Analysis of the binding indicated the presence of a high affinity binding site with nKa approximately equal to 10 uM-1. Furthermore, it was found that binding of sodium oleate to FN modulated its susceptibility to degradation by various proteinases. FN saturated with sodium oleate was hydrolysed at a higher rate by trypsin, cathepsin D, thermolysin and pancreatic elastase than native FN. In contrast, sodium oleate inhibits the activity of two human granulocyte proteinases, human leucocyte elastase (HLE) and cathepsin G on either FN or on their respective specific synthetic substrates (at concentrations ranging from 10(-6) mM to 10 mM). Cathepsin G inhibition was non-competitive and gave a Ki in the 10 uM range similar to the previously reported inhibitory constant of oleic acid toward HLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号