首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UDPglucose-4-epimerase (EC 5.1.3.2) from Saccharomyces fragilis is inactivated by 0.1 mM 5,5'-dithiobis-(2-nitrobenzoate) in 6 min. Unlike p-chloromercuribenzoate-inactivated or heat-inactivated enzymes, the dithiobisnitrobenzoate-inactivated enzyme retains the dimeric structure and NAD is not dissociated from the protein moiety. Inactivation of the enzyme by dithiobisnitrobenzoate can not therefore be attributed to any subsequent loss of structural integrity or to the detachment of the cofactor from the apoenzyme. The inactivated enzyme can be almost fully reactivated in the presence of mercaptoethanol and characteristic properties of native enzyme are regained. The inactivation by dithiobisnitrobenzoate can be substantially protected by UDPglucose or UDPgalactose indicating a possible critical involvement of one or more sulfhydryl groups at the active site.  相似文献   

2.
A chromophorics and fluorescent analog of uridine 5'-monophosphate (UMP), a known competitive inhibitor of UDPglucose 4-epimerase was synthesised. This analog, namely 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) uridine 5'-monophosphate, was found to be a powerful reversible inhibitor of UDPglucose 4-epimerase indicating its interaction with the substrate binding site of the enzyme. The extreme sensitivity of the fluorescence emission spectrum of this analog to solvent polarity makes it an excellent probe for the study of the environment at the active site of the enzyme. We report here the effective use of this UMP analog to demonstrate that the hydroxyl groups of the ribose moiety of UMP and presumably the substrates (UDPgalactose and UDPglucose) do not reside in a hydrophobic milieu.  相似文献   

3.
T Nishino  T Nishino 《Biochemistry》1987,26(11):3068-3072
Xanthine-NAD and NADH-methylene blue oxidoreductase activities of chicken liver xanthine dehydrogenase were inactivated by incubation with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (5'-FSBA), an active site directed reagent for nucleotide binding sites. The inactivation reaction displayed pseudo-first-order kinetics. A double-reciprocal plot of inactivation velocity vs. 5'-FSBA concentration showed that 5'-FSBA and enzyme formed a complex prior to inactivation. NAD protected the enzyme from inactivation by 5'-FSBA in a competitive fashion. The modified enzyme had the same xanthine-dichlorophenolindophenol and xanthine-O2 oxidoreductase activities as the native enzyme, and on addition of xanthine to the modified enzyme, bleaching of the spectrum occurred in the visible region. The amount of radioactivity incorporated into the enzyme by incubation with [14C]-5'-FSBA was parallel to the loss of xanthine-NAD oxidoreductase activity, and the stoichiometry was 1 mol/mol of enzyme-bound FAD for complete inactivation. These results indicated that 5'-FSBA modified specifically the binding site for NAD of chicken liver xanthine dehydrogenase. The incorporated radioactivity was released slowly from 14C-labeled enzyme by incubation with dithiothreitol with concomitant restoration of catalytic activity. The modified residue responsible for inactivation was identified as a tyrosine.  相似文献   

4.
UDPglucose 4-epimerase from Kluyveromyces fragilis was completely inactivated by diethylpyrocarbonate following pseudo-first order reaction kinetics. The pH profile of diethylpyrocarbonate inhibition and reversal of inhibition by hydroxylamine suggested specific modification of histidyl residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of 1 essential histidine residue to be responsible for loss in catalytic activity of yeast epimerase. No major structural change in the quarternary structure was observed in the modified enzyme as shown by the identical elution pattern on a calibrated Sephacryl 200 column and association of coenzyme NAD to the apoenzyme. Failure of the substrates to afford any protection against diethylpyrocarbonate inactivation indicated the absence of the essential histidyl residue at the substrate binding region of the active site. Unlike the case of native enzyme, sodium borohydride failed to reduce the pyridine moiety of the coenzyme in the diethylpyrocarbonate-modified enzyme. This indicated the presence of the essential histidyl residue in close proximity to the coenzyme binding region of the active site. The abolition of energy transfer phenomenon between the tryptophan and coenzyme fluorophore on complete inactivation by diethylpyrocarbonate without any loss of protein or coenzyme fluorescence are also added evidences in this direction.  相似文献   

5.
A novel enzyme, formaldehyde dismutase, was purified and crystallized from the cell extract of an isolated bacterium, Pseudomonas putida F61. The enzyme catalyzes the dismutation of aldehydes and alcohol:aldehyde oxidoreduction in the absence of an exogenous electron acceptor. The enzyme is composed of four identical subunits with a Mr of 44 000. Each subunit contains 1 mol NAD(H) and 2 mol zinc/mol. The ratio of NAD+ and NADH in a crystalline preparation of the enzyme was about 7:3. The enzyme-bound coenzyme was completely reduced and oxidized on the addition of a large amount of an alcohol and an aldehyde respectively. Both the oxidized and reduced enzymes catalyzed the dismutation reaction to the same extent. Steady-state kinetics of the enzyme were investigated using an oxidoreduction reaction between an alcohol and p-nitroso-N, N-dimethylaniline. The enzyme obeys a ping-pong mechanism and is competitively inhibited by an alcoholic substrate analogue, pyrazole, but not coenzyme analogues, such as AMP, N-methylnicotinamide. These results indicate that NAD(H) binds firmly (but not covalently) at each active site. The enzyme-bound NAD(H) was reduced and oxidized only by the added second substrates, alcohol and aldehyde respectively, and not by exogenous electron acceptors [including NAD(H)].  相似文献   

6.
1. D-amino acid oxidase is inactivated by reaction with a low molar excess of dansyl chloride at pH 6.6, with complete inactivation accompanied by incorporation of 1.7 dansyl residues per mol of enzyme-bound flavin. The presence of benzoate, a potent competitive inhibitor, protects substantially against inactivation. Evidence is presented that the inactivation is due to dansylation of an active site histidine residue. Reactivation may be obtained by incubation with hydroxylamine. Diethylpyrocarbonate also inactivates the enzyme and modifies the labeling pattern with dansyl chloride. 2. Butanedione in the presence of borate reacts rapidly to inactivate D-amino acid oxidase. Reactivation is obtained spontaneously on removal of borate, implicating reaction of butanedione with an active site arginine residue. 3. Fluorodinitrobenzene appears to behave as an active site-directed reagent when mixed with D-amino acid oxidase at pH 7.4. Complete inactivation is obtained with incorporation of 2.0 dinitrophenyl residues per mol of enzyme-bound flavin. Again benzoate protects against inactivation; only one dinitrophenyl residue is incorporated in the presence of benzoate. The active site residue attacked by fluorodinitrobenzene has been identified as tyrosine.  相似文献   

7.
Inactivation of dihydropyrimidine dehydrogenase by 5-iodouracil   总被引:2,自引:0,他引:2  
5-Iodouracil was a substrate for bovine liver dihydropyrimidine dehydrogenase (DHPDHase) and was a potent inactivator of the enzyme. NADPH increased the rate of inactivation and thymine protected against inactivation. These findings suggest that 5-iodouracil was a mechanism-based inactivator. However, dithiothreitol and excess 5-iodouracil protected the enzyme against inactivation. Thus, a reactive product, presumably 5-iodo-5,6-dihydrouracil generated through the enzymatic reduction of 5-iodouracil, was released from DHPDHase during processing of 5-iodouracil. Since only 18% of [6-3H]5-iodouracil reduced by DHPDHase was covalently bound to the enzyme and radiolabel was not lost to the solvent as tritium, the partition coefficient for inactivation was 4.5. However, the enzymatic activity was completely titrated with 1.7 mol of 5-iodouracil per mol of enzyme-bound flavin. These results indicate that there was 0.31 mol of enzyme-bound inactivator per mol of enzyme flavin. This suggests there were 3.2 flavins per active site, which is consistent with the report of multiple flavins per enzymic subunit (Podschun, B., Wahler, G., and Schnackerz, K. D. (1989) Eur. J. Biochem. 185, 219-224). DHPDHase was inactivated by 2.1 mol of racemic 5-iodo-5,6-dihydrouracil per mol of active sites. The stoichiometry for inactivation of the enzyme by the nonenzymatically generated enantiomer of 5-iodo-5,6-dihydrouracil was calculated to be 1. Two radiolabeled fragments were isolated from a tryptic digest of DHPDHase inactivated with radiolabeled 5-iodouracil. The amino acid sequences of these peptides were Asn-Leu-Ser-X-Pro-His and Asn-Leu-Ser-X-Pro-His-Gly-Met-Gly-Glu-Arg where X was the modified amino acid containing radiolabel from [6-3H]5-iodouracil. Fast atom bombardment mass spectral analysis of the smaller peptide yielded a protonated parent ion mass of 782 daltons that was consistent with X being a S-(hexahydro-2,4-dioxo-5-pyrimidinyl)cysteinyl residue.  相似文献   

8.
The phosphorus atoms of NAD+ bound within the active site of UDP-galactose 4-epimerase from Escherichia coli exhibit two NMR signals, one at delta = -9.60 +/- 0.05 ppm and one at delta = -12.15 +/- 0.01 ppm (mean +/- standard deviation of four experiments) relative to 85% H3PO4 as an external standard. Titration of epimerase.NAD+ with UMP causes a UMP-dependent alteration in the chemical shifts of the resulting exchange-averaged spectra, which extrapolate to delta = -10.51 ppm and delta = -11.06 ppm, respectively, for the fully liganded enzyme, with an interconversion rate between epimerase.NAD+ and epimerase.NAD+.UMP of at least 490 s-1. Conversely, the binding of 8-anilinonaphthalene-1-sulfonate, which is competitive with UMP, causes a significant sharpening of the epimerase.NAD+ resonances but very little alteration in their chemical shifts, to delta = -9.38 ppm and delta = -12.16 ppm, respectively. UMP-dependent reductive inactivation by glucose results in the convergence of the two resonances into a single signal of delta = -10.57 ppm, with an off-rate constant for UMP dissociation from the epimerase.NADH.UMP complex estimated at 8 s-1. Reductive inactivation by borohydride under anaerobic conditions yields a single, broad resonance centered at about delta = -10.2 ppm. The data are consistent with, and may reflect, the activation of NAD+ via a protein conformational change, which is known from chemical studies to be driven by uridine nucleotide binding. Incubation of epimerase.NAD+ with UMP in the absence of additional reducing agents causes a very slow reductive inactivation of the enzyme with an apparent pseudo-first-order rate constant of 0.013 +/- 0.001 h-1, which appears to be associated with liberation of inorganic phosphate from UMP.  相似文献   

9.
A new reactive ADP analogue has been synthesized: 2-(4-bromo-2,3-dioxobutylthio)adenosine 5'-diphosphate (2-BDB-TADP). Reaction of ADP with m-chloroperoxybenzoic acid gave ADP 1-oxide, which was treated with NaOH, followed by reaction with carbon disulfide to yield 2-thioadenosine 5'-diphosphate. The final product was synthesized by condensation of 2-thioadenosine 5'-diphosphate with 1,4-dibromobutanedione. Reaction of pig heart NAD-specific isocitrate dehydrogenase with this nucleotide analogue (0.4 mM) causes a time-dependent loss of activity to a limiting value of 75% inactivation. The rate constant for inactivation exhibits a nonlinear dependence on the concentration of 2-BDB-TADP, with kmax = 0.021 min-1 and KI = 0.067 mM. Complete protection against inactivation by 0.2 mM 2-BDB-TADP is provided by ADP + Mn2+, but not by Mn2+ alone, isocitrate, alpha-ketoglutarate, or NAD. Incorporation of 2-BDB-TADP is proportional to the extent of inactivation, reaching 1 mol of reagent/mol of enzyme subunit when the enzyme is maximally inactivated. However, when inactivation is totally prevented by incubation with 2-BDB-TADP in the presence of ADP and Mn2+, 0.5 mol of reagent/mol of subunit is still incorporated, suggesting that inactivation may be attributed to 0.5 mol of reagent/mol of average subunit. In the native enzyme, the Km for total isocitrate is 1.8 mM and is decreased 6-fold to 0.3 mM in the presence of 1 mM ADP, whereas in the modified enzyme, with 25% residual activity, the Km for total isocitrate is about the same in the absence (2.0 mM) or presence (1.8 mM) of ADP. These results indicate that 2-BDB-TADP acts as an affinity label of the ADP allosteric site of NAD-dependent isocitrate dehydrogenase.  相似文献   

10.
An NAD+ dependent succinic semialdehyde dehydrogenase from bovine brain was inactivated by pyridoxal-5'- phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After NaBH(4) reduction of the pyridoxal-5'-phosphate inactivated enzyme, it was observed that 3.8 mol phosphopyridoxyl residues were incorporated/enzyme tetramer. The coenzyme, NAD+, protected the enzyme against inactivation by pyridoxal-5'-phosphate. The absorption spectrum of the reduced and dialyzed pyridoxal-5'-phosphate-inactivated enzyme showed a characteristic peak at 325 nm, which was absent in the spectrum of the native enzyme. The fluorescence spectrum of the pyridoxyl enzyme differs completely from that of the native enzyme. After tryptic digestion of the enzyme modified with pyridoxal-5'-phosphate followed by [3H]NaBH4 reduction, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. The sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other mammalian succinic semialdehyde dehydrogenase brain species including human. It is suggested that the catalytic function of succinic semialdehyde dehydrogenase is modulated by binding of pyridoxal-5'-phosphate to specific Lys(347) residue at or near the coenzyme-binding site of the protein.  相似文献   

11.
Synopsis The chondrocytes of the neonatal proximal humeral chondroepiphyses of twelve purebred English pointer pups were investigated histochemically, using frozen serial sections, for chondroitin sulphate and for the following enzyme activities: lactate dehydrogenase, NAD and NADP transhydrogenases, glutamate dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, ATPase, succinate dehydrogenase, and UDPgalactose 4-epimerase. By using Alcian Blue with and without a prior digestion in testicular hyaluronidase, and Alcian Blue in the presence of 0.9 M magnesium chloride, it was found that about half the chondrocytes stained as if they were producing significant amounts of chondroitin sulphate. Only one enzyme, UDPgalactose 4-epimerase (which is involved in the biosynthesis of chondroitin sulphate), was found to have a similar staining heterogeneity. Therefore, it was concluded that the chondrocytes studied possessed a functional heterogenicity with particular reference to chondroitin sulphate synthesis while appearing morphologically homogeneous.  相似文献   

12.
UDPgalactose 4-epimerase (epimerase) catalyzes the reversible conversion between UDPgalactose and UDPglucose and is an important enzyme of the galactose metabolic pathway. The Saccharomyces cerevisiae epimerase encoded by the GAL10 gene is about twice the size of either the bacterial or human protein. Sequence analysis indicates that the yeast epimerase has an N-terminal domain (residues 1-377) that shows significant similarity with Escherichia coli and human UDPgalactose 4-epimerase, and a C-terminal domain (residues 378-699), which shows extensive identity to either the bacterial or human aldose 1-epimerase (mutarotase). The S. cerevisiae epimerase was purified to > 95% homogeneity by sequential chromatography on DEAE-Sephacel and Resource-Q columns. Purified epimerase preparations showed mutarotase activity and could convert either alpha-d-glucose or alpha-d-galactose to their beta-anomers. Induction of cells with galactose led to simultaneous enhancement of both epimerase and mutarotase activities. Size exclusion chromatography experiments confirmed that the mutarotase activity is an intrinsic property of the yeast epimerase and not due to a copurifying endogenous mutarotase. When the purified protein was treated with 5'-UMP and l-arabinose, epimerase activity was completely lost but the mutarotase activity remained unaffected. These results demonstrate that the S. cerevisiae UDPgalactose 4-epimerase is a bifunctional enzyme with aldose 1-epimerase activity. The active sites for these two enzymatic activities are located in different regions of the epimerase holoenzyme.  相似文献   

13.
UDP-glucose 4-epimerase from Saccharomyces fragilis was inactivated by the arginine-specific reagents phenylglyoxal, 1,2-cyclohexanedione, and 2,3-butanedione following pseudo first order reaction kinetics. The reaction order with respect to phenylglyoxal was 1.8 and that with respect to the other two diones was close to unity. Protection afforded by substrate and competitive inhibitors against inactivation by phenylglyoxal and the reduced interaction of 1-anilinonaphthalene 8-sulfonic acid, a fluorescent probe for the substrate-binding region after phenylglyoxal modification, suggested the presence of an essential arginine residue at the substrate-binding region. Experiments with [7-14C]phenylglyoxal in the presence of UMP, a ligand known to interact at the substrate-binding region, showed that only the arginine residue at the active site could be modified by phenylglyoxal. The characteristic coenzyme fluorescence of the yeast enzyme was found to be enhanced three times in phenylglyoxal-inactivated enzyme suggesting the incorporation of the phenyl ring near the pyridine moiety of NAD.  相似文献   

14.
UDP-glucose 4-epimerase from Saccharomyces fragilis is rapidly inactivated by heating at 42 degrees C for 7 min and at 45 degrees C for 4 min. The effector site, specific for sugar phosphates, is destroyed still earlier. The enzyme is inactivated by the dissocation of NAD from it leaving the dimeric structure unaffected. It can be reactivated by mercaptoethanol and NAD, both of which are essential for reactivation, and NAD becomes associated with the dimeric protein moiety.  相似文献   

15.
Lines of evidence are presented which indicate that rat liver S-adenosylhomocysteinase consists of four identical or nearly identical subunits. Cross-linking of the enzyme with dimethyl suberimidate followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis yields four distinct protein bands with molecular weights of 47,000, 93,000, 145,000, and 190,000. The molecular weight of the largest protein is in excellent agreement with that of the native enzyme. Carboxypeptidase A liberates 4 mol of COOH-terminal tyrosine/mol of enzyme, and the number of arginine-containing peptides in a tryptic digest of the enzyme is one-fourth of that arginine residues present in the enzyme. The enzyme reversibly binds 4 mol of the substrate adenosine in a noninteracting manner, and the binding is associated with the reduction of 3.2 mol of enzyme-bound NAD+. However, in the presence of dithiothreitol, the same compound causes a time-dependent irreversible loss of enzyme activity concomitant with the formation of 3.6 mol of enzyme-bound NADH/mol of enzyme. Studies with adenine-labeled adenosine shows that radioactivity corresponding to 3.8 mol of substrate is tightly bound to the inactivated enzyme. Since the inactivation is apparently the consequence of reaction of dithiothreitol with an enzyme-bound intermediate as revealed by the kinetics of inactivation, these results support the conclusion that the four subunits of rat liver S-adenosylhomocysteinase are functionally equivalent.  相似文献   

16.
1. The reactive analogue oADP produced by periodate oxidation of ADP has been studied as a potential affinity label for the enzyme bovine glutamate dehydrogenase, using circular dichroism (CD) difference spectroscopy to monitor specific binding. 2. The analogue binds stoichiometrically, rapidly and reversibly to the adenine nucleotide binding site with Kd approximately equal to 12 microM (20 degrees C, pH 7) with characteristic intensification of the adenine nucleotide CD at 260 nm. 3. This complex is unstable and decays with a half-life of about 1.5 h; the analogue then becomes attached as a Schiff base to a number of subsidiary sites, including the enzyme active site, with partial inactivation of the enzyme. 4. Depending upon initial concentration of oADP, the enzyme activity is progressively lost during the slow reaction; following borohydride reduction, up to four molecules of analogue are bound/subunit. 5. Protection against loss of enzyme activity is afforded by the coenzyme NAD+ plus glutarate or L-hydroxyglutarate (an effective inhibitor), or by glutarate alone, but not by NAD+ alone. 6. Spectroscopic and protection studies indicate that after the decay of the specific CD signal, the enzyme retains the capacity to bind ADP, but that this is progressively lost in parallel with decay of enzymic activity. 7. The results are consistent with proximity or functional interaction between the adenine nucleotide site and the coenzyme binding portion of the active site. 8. Thus oADP does not act as a true affinity label for the adenine nucleotide binding site, but the reaction subsequent to binding at that site shows some specificity directed towards the active site.  相似文献   

17.
Pyruvate decarboxylase from yeast is progressively inactivated in the presence of pyruvate and an extrinsic oxidant such as 2,6-dichloroindophenol or hexacyanoferrate(III). The inactivation is linked to the oxidation of the hydroxyethylthiamine diphosphate intermediate to acetate. Removal of low-molecular compounds by gel filtration does not reactivate the enzyme. The rate of inactivation obeys saturation kinetics with respect to substrate concentration and is independent of enzyme concentration. In analogy to the paracatalytic inactivation of other enzymes forming oxidizable carbanion intermediates [Christen, P. (1977) Methods Enzymol.46, 48--54], the oxidation of enzyme-bound hydroxyethylthiamine diphosphate is thought to generate a transiently reactive intermediate which, without being released from the enzyme, covalently modifies a group at or near the active site. Reconstitution experiments indicate that the protein rather than the coenzyme moiety is modified.  相似文献   

18.
Incubation of an NAD+-dependent succinic semialdehyde dehydrogenase from bovine brain with 4-dimethylaminoazobenzene-4-iodoacetamide (DABIA) resulted in a time-dependent loss of enzymatic activity. This inactivation followed pseudo first-order kinetics with a second-order rate constant of 168 m(-1).min(-1). The spectrum of DABIA-labeled enzyme showed a characteristic peak of the DABIA alkylated sulfhydryl group chromophore at 436 nm, which was absent from the spectrum of the native enzyme. A linear relationship was observed between DABIA binding and the loss of enzyme activity, which extrapolates to a stoichiometry of 8.0 mol DABIA derivatives per mol enzyme tetramer. This inactivation was prevented by preincubating the enzyme with substrate, succinic semialdehyde, but not by preincubating with coenzyme NAD+. After tryptic digestion of the enzyme modified with DABIA, two peptides absorbing at 436 nm were isolated by reverse-phase HPLC. The amino acid sequences of the DABIA-labeled peptides were VCSNQFLVQR and EVGEAICTDPLVSK, respectively. These sites are identical to the putative active site sequences of other brain succinic semialdehyde dehydrogenases. These results suggest that the catalytic function of succinic semialdehyde dehydrogenase is inhibited by the specific binding of DABIA to a cysteine residue at or near its active site.  相似文献   

19.
20.
R J Auchus  D F Covey 《Biochemistry》1986,25(23):7295-7300
14,15-Secoestra-1,3,5(10)-trien-15-yne-3,17 beta-diol (1) is a mechanism-based inactivator of human placental 17 beta,20 alpha-hydroxysteroid dehydrogenase (estradiol dehydrogenase, EC 1.1.1.62). Inactivation with alcohol 1 requires NAD-dependent enzymic oxidation and follows approximately pseudo-first-order kinetics with a limiting t1/2 of 82 min and a "Ki" of 2.0 microM at pH 9.2 and 25 degrees C. At saturating concentrations of NAD, the initial rate of inactivation is slower than in the presence of 5 microM NAD, suggesting that cofactor binding to free enzyme impedes the inactivation process. Glutathione completely protects the enzyme from inactivation at both cofactor concentrations. Inactivation with 45 microM tritiated alcohol 1 followed by dialysis and gel filtration demonstrates a covalent interaction and affords an estimated stoichiometry of 1.4 molecules of steroid per subunit (2.8 per dimer). Chemically prepared 3-hydroxy-14,15-secoestra-1,3,5(10)-trien-15-yn-17-one (2) rapidly inactivates estradiol dehydrogenase with biphasic kinetics. From the latter phase, a Ki of 2.8 microM and a limiting t1/2 of 12 min at pH 9.2 were determined. Estradiol, NADH, and NAD all retard this latter inactivation phase. We propose that enzymatically generated ketone 2 inactivates estradiol dehydrogenase after its release from and return to the active site of free enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号