首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

The photochemical reflectance index (PRI) is correlated to photosynthetic efficiency and has been successfully applied at multiple scales for remote estimation of physiological functioning. However, interpretation of the PRI signal can be confounded by many different variables including declines in photochemical pigments. Our study was aimed at investigating PRI in response to salinity stress, and evaluating physiological and pigment responses of two co-occurring shrubs, Baccharis halimifolia and Myrica cerifera in laboratory studies.

Methods

Photosynthesis, water relations, chlorophyll fluorescence, hyperspectral reflectance and leaf pigment contents were measured following salinity treatment.

Results

Physiological measurements indicated that both species exhibit adaptations which protect PSII during periods of stress. Chlorophyll fluorescence parameters were affected in both species, but indicated that other photochemical reactions (e.g. photorespiration) were important for energy dissipation in absence of chlorophyll changes. After many days of reduced photosynthesis, photochemical changes were detectable using PRI indicating chronic stress.

Conclusions

Variations in PRI were not related to changes in pigments but strongly related to tissue chlorides indicating salinity effects on the PRI signal. Thus, PRI is an indicator of salinity stress in these coastal species and may be as an early signal for increasing salt exposure associated with rising sea-level and climate change.  相似文献   

2.
3.

Aims

This study aimed to compare stepwise multiple linear regression (SMLR), partial least squares regression (PLSR) and support vector machine regression (SVMR) for estimating soil total nitrogen (TN) contents with laboratory visible/near-infrared reflectance (Vis/NIR) of selected coarse and heterogeneous soils. Moreover, the effects of the first (1st) vs. second (2nd) derivative of spectral reflectance and the importance wavelengths were explored.

Methods

The TN contents and the Vis/NIR were measured in the laboratory. Several methods were employed for Vis/NIR data pre-processing. The SMLR, PLSR and SVMR models were calibrated and validated using independent datasets.

Results

Results showed that the SVMR and the PLSR models had similar performances, and better performances than the SMLR. The spectral bands near 1450, 1850, 2250, 2330 and 2430 nm in the PLSR model were important wavelengths. In addition, the 1st derivative was more appropriate than the 2nd derivative for spectral data pre-processing.

Conclusions

PLSR was the most suitable method for estimating TN contents in this study. SVMR may be a promising technique, and its potential needs to be further explored. Moreover, the future studies using outdoor and airborne/satellite hyperspectral data for estimating TN content are necessary for testing the findings.  相似文献   

4.
Assessing the accuracy of simple field based root strength measurements   总被引:1,自引:0,他引:1  

Background and aims

Root reinforcement of slopes is a key control on landslide triggering, yet remains difficult to measure. Dozens of studies have utilised a wide range of testing methods to understand the tensile strength properties to estimate root reinforcement. We present a systematic attempt to evaluate the simple and efficient field spring scale method.

Methods

This study compared different testing methods to assess the strength of Picea sitchensis roots. We tested roots in the field using a spring scale and with two different pre-treatments in the laboratory using a universal testing machine. Root strengths were assessed under different testing conditions in laboratory and field experiments using different pre-testing treatments, stress concentration at clamps, and spacer types.

Results

Tensile strengths measured in the laboratory and field, with different spacers and clamping stress concentrations were not significantly different in our testing. Roots that were incompletely rehydrated after being dried were significantly stronger than wetter roots, suggesting moisture is one of the dominant controls on root strength.

Conclusions

Our results suggest that there is a large range of natural variability in root tensile strength. The field-based, spring scale method produces results that are indistinguishable from those of more precise universal testing machines.  相似文献   

5.

Aims

This study evaluated how iron nutrition affect leaf anatomical and photosynthetic responses to low cadmium and its accumulation in peanut plants.

Methods

Seedlings were treated with Cd (0 and 0.2 μM CdCl2) and Fe (0, 10, 25, 50 or 100 μM EDTA-Na2Fe) in hydroponic culture.

Results

Cadmium accumulation is highest in Fe-deficient plants, and dramatically decreased with increasing Fe supply. The biomass, gas exchange, and reflectance indices were highest at 25 μM Fe2+ treatments, indicating the concentration is favorable for the growth of peanut plants. Both Fe deficiency and Cd exposure impair photosynthesis and reduce reflectance indices. However, they show different effects on leaf anatomical traits. Fe deficiency induces more and smaller stomata in the leaf surface, but does not affect the inner structure. Low Cd results in a thicker lamina with smaller stomata, thicker palisade and spongy tissues, and lower palisade to spongy thickness ratio. The stomatal length and length/width ratio in the upper epidermis, spongy tissue thickness, and palisade to spongy thickness ratio were closely correlated with net photosynthetic rate, stomatal conductance, and transpiration rate.

Conclusions

Cd accumulation rather than Fe deficiency alters leaf anatomy that may increase water use efficiency but inhibit photosynthesis.  相似文献   

6.

Aims

Although many studies on the mechanism of Al toxicity and tolerance have been conducted independently, events occurring during the recovery process from Al injury is limited. This study was to investigate Al toxicity recovery mechanism focusing in morphological and physiological aspect.

Methods

We investigated the mechanisms underlying Al toxicity recovery in terms of oxidative stress using the pea root apex as a model system.

Results

The accumulation of reactive oxygen species was remarkably high in the root under continued Al treatment but decreased in the recovering root. The superoxide anion exuded in the presence of nicotinamide adenine dinucleotide phosphate (NADPH) showed a similar tendency with respect to the accumulation of reactive oxygen species. A similar pattern of lignin content and superoxide dismutase activity was observed among the treatments, while the increased peroxidation in the root under continued Al treatment did not decline with recovery treatment. A longitudinal section of the root under continued Al treatment showed the accumulation of superoxide anion, lignin and peroxide (H2O2) at the epidermal and outer cortex region where the Al induced injuries, including ruptures, are detected.

Conclusions

Oxidative stress is associated with the mechanism of Al toxicity recovery. The recovery process might include the elongation of the central cylinder as a consequence of the oxidative stress-induced formation of the zonal region (ZR). The results further suggest a plausible role for the ZR in the programmed cell death-like function involved in Al toxicity recovery.  相似文献   

7.

Background and aims

Variations in responses to soil N between a non-N-fixing shrub, Baccharis halimifolia L., and a N-fixing shrub, Morella cerifera (L.) Small, were tested over 12 weeks to determine whether N availability is the sole cause of persistent dominance of M. cerifera on barrier islands.

Methods

Plants were supplied increasing levels of soil N up to 200 mg kg?1. Measurements included gas exchange and chlorophyll fluorescence parameters across treatments, species, and time. Tissues were analyzed for differences in biomass and nutrients.

Results

Baccharis halimifolia had reduced physiological responses across all treatment levels, but M. cerifera had comparatively few variations. Across all treatments B. halimifolia photosynthesis and stomatal conductance were reduced by 62 and 76 %, respectively,by week 12. Increasing foliar δ15N values across treatments for M. cerifera indicated a shift from utilizing fixed N to available soil N. Biomass was highest at 200 mg kg?1 N for both species. Baccharis halimifolia showed indications of stress response and resource limitation based on physiological responses, nutrient contents, and isotope effects.

Conclusions

Baccharis halimifolia showed signs of co-limitation of both N and P whereas M. cerifera was limited by neither, suggesting that dominance of M. cerifera is only partially explained by actinorhizal symbiosis and N availability.  相似文献   

8.

Objectives

To identify parameters that can be used for the analysis of natural variation in leaf senescence of wheat; and to understand the association between the onset and progression of leaf senescence with N uptake and root traits.

Methods

Chlorophyll content and the proportion of yellow leaves were used as senescence indicators and their relation with other morphological and physiological traits were measured in contrasting early senescing (ES) and late senescing (LS) wheat lines.

Results

There were significant genotype effects on the onset and progress of senescence. The ES lines in which leaf senescence commenced early had significantly lower root biomass and N uptake than LS lines. The strong negative association between the extent of leaf senescence with root biomass and N uptake indicated that the poor root growth induced N limitation caused the early senescence of ES lines.

Conclusions

The leaf senescence development in ES lines was precocious and constitutive as the trait expressed even under optimal growth conditions suggesting they could be useful in understanding the genetic regulation of senescence under different abiotic stress situations. Accelerated leaf senescence in wheat could be a mechanism to compensate for limitations in the root system that tend to restrict nutrient uptake.  相似文献   

9.

Background and aims

Green roofs are often installed to reduce urban stormwater runoff. To optimally achieve this, green roof plants need to use water when available, but reduce transpiration when limited to ensure survival. Succulent species commonly planted on green roofs do not achieve this. Water availability on green roofs is analogous to natural shallow-soil habitats including rock outcrops. We aimed to determine whether granite outcrop species could improve green roof performance by evaluating water use strategies under contrasting water availability.

Methods

Physiological and morphological responses of 12 granite outcrop species with different life-forms (monocots, herbs and shrubs) and a common green roof succulent were compared in well watered (WW) and water deficit (WD) treatments.

Key results

Granite outcrop species showed a variety of water-use strategies. Unlike the green roof succulent all of the granite outcrop species showed plasticity in water use. Monocot and herb species showed high water use under WW but also high water status under WD. This was achieved by large reductions in transpiration under WD. Maintenance of water status was also related to high root mass fraction.

Conclusions

By developing a conceptual model using physiological traits we were able to select species suitable for green roofs. The ideal species for green roofs were high water users which were also drought tolerant.  相似文献   

10.

Background and aims

This study aims to investigate the effect of nitrogen (N) on grain phosphorus (P) accumulation in japonica rice.

Methods

Six cultivars with contrasting agronomic traits were grown for 3 years (from 2008 to 2010) of field experiments under seven N treatments and 1 year (in 2010) of pot experiments with five N treatments to study the effect of N on grain phosphorus accumulation and to explore its physiological foundation.

Results

Grain total P and phytic acid concentration showed a clearly decreasing trend as N rate increased for both field and pot experiments. Pot experiment revealed that application of N increase plant biomass, but tended to lower plant P uptake, especially for the split topdressing treatments. Both harvest index (HI) and P harvest index (PHI) increased with N rate, but PHI was consistently higher than HI, indicating the larger proportion of P translocation to grain than that of dry matter by N. Further, ratio of PHI/HI differed significantly among genotypes, but was stable across contrasting N treatments.

Conclusions

The combination of decreased plant P uptake and dilution effect of increased grain yield by N is proposed as underlying mechanism of the decreased grain P concentration by high N.  相似文献   

11.

Background and Aims

Roots express morphological and physiological plasticity that may be adaptations for efficient nutrient capture when soil nutrients are heterogeneous in space and time. In terms of nutrient capture per unit of carbon invested in roots, morphological plasticity should be more advantageous when nutrient patches are stable in time, and physiological plasticity when nutrients are variable in time.

Methods

Here we examined both traits in two Pinus species, two Liquidambar species, two Solidago species, Ailanthus altissima and Callistephus chinesis, grown in pots where the same total level of nutrient addition was provided in a factorial experiment with different levels of spatial and temporal variability.

Results

Total plant root growth, Root/Shoot ratios and morphological plasticity were less when nutrients were temporally variable instead of stable. Physiological plasticity was more variable than morphological across treatments and species and was not predictably greater when nutrient supply was pulsed instead of constant. Large variability, especially in physiological plasticity, was observed, and physiological plasticity was greater in non-woody than in woody species.

Conclusions

Our results suggest that the two traits differ in environmental factors that control their expression, and that the nature of nutrient patchiness may have more direct impact on the evolution of morphological than physiological plasticity.  相似文献   

12.

Aim

The objective of this study was to develop a remediation strategy for soil co-contaminated with decabromodiphenyl ether (BDE-209) and heavy metals (Cd, Pb and Zn) using co-plantation of the hyperaccumulator plant (Sedum alfredii) with tall fescue (Festuca arundinaceae) associated with a BDE degrader (Bacillus cereus strain JP12).

Methods

A 120-day remediation experiment was conducted under greenhouse conditions. S. alfredii and tall fescue were grown in monoculture and intercropped in artificially contaminated soil. Plant biomass, concentration of polybrominated diphenyl ethers, density of soil bacteria, soil enzyme activity, and the physiological profile of the soil microbial community were determined.

Results and discussion

Inoculation with JP12 significantly increased BDE-209 dissipation in soil. Phytoextraction of metals was also enhanced by JP12 inoculation due to the improved plant growth. Planting of tall fescue significantly enhanced BDE-209 dissipation as compared to that in the bare soil because of the increased soil microbial activity. Tall fescue showed higher Pb phytoextraction efficiency than S. alfredii, but Pb was principally retained in the roots of tall fescue. BDE-209 dissipation and metal phytoextraction were highest when co-planting S. alfredii with tall fescue inoculated with strain JP12. Pyrosequencing analysis revealed that the inoculated JP12 could functionally adapt to the introduced soil, against competition with indigenous microorganisms in soil.

Conclusions

Co-planting of S. alfredii with tall fescue combined with BDE-degrading bacterial strain JP12 is promising for remediation of soil co-contaminated with BDE-209 and metals.  相似文献   

13.
14.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

15.
16.
17.

Background

In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery.

Methods

ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate. After 14, 28 and 42 days of immersion the ZEK100 plates were mechanically tested via four point bending test. The surfaces of the immersed specimens were characterized by SEM, EDX and XRD.

Results

The four point bending test displayed an increased bending strength after 6 weeks immersion compared to the 2 week group and 4 week group. The characterization of the surface revealed the presence of high amounts of O, P and Ca on the surface and small Mg content. This indicates the precipitation of calcium phosphates with low solubility on the surface of the ZEK100 plates.

Conclusions

The results of the present in vitro study indicate that ZEK100 is a potential candidate for degradable orthopedic implants. Further investigations are needed to examine the degradation behavior.  相似文献   

18.

Background

The promoted root growth under developmental plasticity triggered specifically by mild drought stress (MDS) is known to contribute to maintained water uptake and dry matter production (DMP).

Aims

To examine whether the expression of developmental plasticity of root systems and its contribution to DMP would be affected by the levels of nitrogen (N) application.

Methods

Two genotypes (CSSL50 derived from Nipponbare/Kasalath cross and Nipponbare) were grown under soil moisture gradients with a line source sprinkler system. Three N fertilizer treatments were used; 25 (low), 75 (standard) and 150 kg N ha?1 (high) in 2009 and 60 (low), 120 (standard) and 180 kg N ha?1 (high) in 2011.

Results

Across varying N level treatments, there were no significant differences in any of the traits examined between the two genotypes under well-watered and severe drought stress conditions. In contrast, under MDS conditions (15–25 % w/w of soil moisture content (SMC) in 2009 and 17–25 % w/w of SMC in 2011), CSSL50 showed greater DMP than Nipponbare. The difference, however, varied with N level treatments since CSSL50’s greater root system development under MDS, was more pronounced at standard and high N levels than at low N level than it was for Nipponbare.

Conclusions

N application enhanced the expression of plasticity in root system development at standard and high N levels as compared with low N level under MDS conditions, which contributed to the maintenance of DMP.  相似文献   

19.

Background

Glutathione reductase (GR) plays a critical role in the maintenance of physiological redox status in cells. However, the comprehensive investigations of GR-modulated oxidative stress have not been reported.

Methods

In the present study, we cultured a human lung adenocarcinoma line CL1-0 and its GR-knockdown derivative CL1-0ΔGR to evaluate their differential responses to UVB-irradiation.

Results

We identified 18 proteins that showed significant changes under UVB-irradiation in CL1-0ΔGR cells rather than in CL1-0 cells. Several proteins involving protein folding, metabolism, protein biosynthesis and redox regulation showed significant changes in expression.

Conclusions

In summary, the current study used a comprehensive lung adenocarcinoma-based proteomic approach for the identification of GR-modulated protein expression in response to UVB-irradiation. To our knowledge, this is the first global proteomic analysis to investigate the role of GR under UVB-irradiation in mammalian cell model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号