首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Open‐pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re‐establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (< 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.  相似文献   

3.
4.

Key message

Fine root ingrowth and mortality of European beech are related to evapotranspiration, cumulative forest floor precipitation, soil temperature and water content, which are affected by forest management and gap creation.

Abstract

The ingrowth and mortality of European beech (Fagus sylvatica L.) fine roots (diameters <2 mm) were studied in relation to environmental variables describing temperature and water availability at four sites, covering a range in environmental conditions likely to be encountered in Slovenian beech forests. Minirhizotron images were used to determine fine root dynamics in a stand and gap in each of the sites for 12 periods during the 2007–2009 growing seasons. The environmental variables included air and soil temperatures, precipitation, forest floor precipitation, evapotranspiration and soil water contents. For data analysis, the daily mean values for each period for all variables were used. Fine root ingrowth and mortality were higher in the managed stand and gap compared to the old-growth stand and gap, but only significantly correlated with each other in the case of the managed stand. Forest floor precipitation and soil temperature were significant in explaining fine root ingrowth, whereas maximal evapotranspiration, soil temperature and soil water content were more important for fine root mortality. However, the correlations were weak and inconsistent among the four sites. By including site as predictor as well as environmental variables, R 2 values of 0.49 and 0.55 for ingrowth and mortality, respectively, were achieved. Despite this, the relationships between the fine root dynamics and selected environmental factors appeared relatively weak and complex, especially for fine root ingrowth and might be partially related also to differences in successional stages of the forests under study.
  相似文献   

5.
不同经营类型毛竹林土壤活性有机碳的差异   总被引:3,自引:0,他引:3  
以起始于1984年的长期不同经营类型毛竹林为研究对象,探讨了秋季毛竹林集约经营后土壤有机碳库的变化。结果表明:(1)集约经营后0—10 cm土层毛竹林土壤总有机碳、易氧化碳、水溶性有机碳和轻组有机质含量分别下降了8.64%,14.11%,8.29%,29.70%(0—20 cm),差异均达到显著水平。(2)两种毛竹林土壤各种碳的剖面特征均随土层深度的增加而呈下降趋势,但下降幅度不同。集约经营在一定程度上影响了毛竹土壤易氧化碳、水溶性有机碳的剖面特征。(3)土壤各活性有机碳之间,土壤总有机碳、易氧化碳、水溶性有机碳与土壤全氮、水解氮、速效K、Ca、Mg之间相关性均达到显著或极显著水平(水溶性有机碳与速效磷相关性不显著),轻组有机质含量除与速效钙极显著相关外,与其它土壤养分之间相关性均不显著。(4)集约经营降低了土壤易氧化碳碳素有效率、水溶性有机碳碳素有效率及土壤碳库活度,并在土壤剖面部分土层达到显著水平。因此,集约经营的毛竹林,通过配施恰当比例的有机无机肥,结合土壤垦复、除草、合理的竹株留养和采伐等综合竹林经营技术,以达到改善土壤质量和实现毛竹林可持续经营的目的。  相似文献   

6.
Quantification of the role of fine roots in the biological cycle of nutrients necessitates understanding root distribution, estimating root biomass, turnover rate and nutrient concentrations, and the dynamics of these parameters in perennial systems. Temporal dynamics, vertical distribution, annual production and turnover, and nitrogen use of fine roots (≤2 mm in diameter) were studied in mature (5-year-old) stands of two enset (Ensete ventricosum) clones using the in-growth bag technique. Live fine root mass generally decreased with increasing depth across all seasons except the dry period. Except for the dry period, more than 70% of the fine root mass was in the above 0-20 cm depth, and the fine root mass in the upper 0–10 cm depth was significantly higher than in the lowest depth (20–30 cm). Live fine root mass showed a seasonal peak at the end of the major rainy season but fell to its lowest value during the dry or short rainy season. The difference between the peak and low periods were significant (p ≤ 0.05). Fine root nitrogen (N) use showed significant seasonal variation where the mean monthly fine root N use was highest during the major rainy season. There were significant effects on N use due to depths and in-growth periods, but not due to clones. Enset fine root production and turnover ranged from 2,339 to 2,451 kg ha−1 year−1 and from 1.55 to 1.80 year−1, respectively. Root N return, calculated from fine root turnover, was estimated at 64–65 kg ha−1 year−1. Fine root production, vertical distribution and temporal dynamics may be related to moisture variations and nutrient (N) fluxes among seasons and along the soil depth. The study showed that fine root production and turnover can contribute considerably to the carbon and nitrogen economy of mature enset plots.  相似文献   

7.
This paper reports the development of a proximal sensing technique used to predict maize root density, soil carbon (C) and nitrogen (N) content from the visible and near-infrared (Vis-NIR) spectral reflectance of soil cores. Eighteen soil cores (0?C60?cm depth with a 4.6?cm diameter) were collected from two sites within a field of 90-day-old maize silage; Kairanga silt loam and Kairanga fine sandy loam (Gley Soils). At each site, three replicate soil cores were taken at 0, 15 and 30?cm distance from the row of maize plants (rows were 60?cm apart). Each soil core was sectioned at 5 depths (7.5, 15, 30, 45, and 60?cm) and soil reflectance spectra were acquired from the freshly cut surface at each depth. A 1.5?cm soil slice was taken at each surface to obtain root mass and total soil C and N reference (measured) data. Root densities decreased with depth and distance from plant and were lower in the silt loam, which had the higher total C and N contents. Calibration models, developed using partial least squares regression (PLSR) between the first derivative of soil reflectance and the reference data, were able to predict with moderate accuracy the soil profile root density (r 2?=?0.75; ratio of prediction to deviation [RPD]?=?2.03; root mean square error of cross-validation [RMSECV]?=?1.68?mg/cm3), soil% C (r 2?=?0.86; RPD?=?2.66; RMSECV?=?0.48%) and soil% N (r 2?=?0.81; RPD?=?2.32; RMSECV?=?0.05%) distribution patterns. The important wavelengths chosen by the PLSR model to predict root density were different to those chosen to predict soil C or N. In addition, predicted root densities were not strongly autocorrelated to soil C (r?=?0.60) or N (r?=?0.53) values, indicating that root density can be predicted independently from soil C. This research has identified a potential method for assessing root densities in field soils enabling study of their role in soil organic matter synthesis.  相似文献   

8.
Cupressus lusitanica seedlings from open-pollinated seeds of 18 families were inoculated with day-old first instar Cinara cupressi. Aphid survival was used to determine the genetic basis and inheritance of resistance to the insect. There was marked variation in aphid survival both between and within families. An individual-tree narrow-sense heritability of 0.76 ± 0.30 shows strong additive genetic control which could allow effective selection and breeding for resistance. Resistant parents produced resistant progeny while susceptible parents produced susceptible progeny. There were notable exceptions as some susceptible parents produced highly resistant progeny, indicating that they had acquired pollen from resistant neighbours. Recovery of aphid damaged trees is evident implying that care should be taken in selecting for resistance. The strong additive variance and potentially high heritability indicate that one cycle of selection may yield a resistant population, while intraspecific crossing may give better results. Implications of the results in a C. lusitanica breeding programme are discussed.  相似文献   

9.
The plant diastereoisomeric diterpenes ent-pimara-8(14)-15-dien-19-oic acid, obtained from Viguiera arenaria, and isopimara-8(14)-15-dien-18-oic acid, isolated from Cupressus lusitanica, were distinctly functionalized by the enzymes produced in whole cell cultures of the fungus Preussia minima, isolated from surface sterilized stems of C. lusitanica. The ent-pimaradienoic acid was transformed into the known 7β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid, and into the novel diterpenes 7-oxo-8 β-hydroxy-ent-pimara-8(14)-15-dien-19-oic and 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acids. Isopimara-8(14)-15-dien-18-oic acid was converted into novel diterpenes 11α-hydroxyisopimara-8(14)-15-dien-18-oic acid, 7β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, and 1β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, along with the known 7β-hydroxyisopimara-8(14)-15-dien-18-oic acid. All compounds were isolated and fully characterized by 1D and 2D NMR, especially 13C NMR. The diterpene bioproduct 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid is an isomer of sphaeropsidin C, a phytotoxin that affects cypress trees produced by Shaeropsis sapinea, one of the main phytopathogen of Cupressus. The differential metabolism of the diterpene isomers used as substrates for biotransformation was interpreted with the help of computational molecular docking calculations, considering as target enzymes those of cytochrome P450 group.  相似文献   

10.
庐山6种树木立地土壤溶液铝形态与溶解有机碳变化   总被引:3,自引:1,他引:3  
于1999年夏季,采集了庐山植物园6种树木立地的不同层次土壤样品,提取土壤溶液,分析其溶液中的溶解铝和溶解有机碳。结果表明,尽管发育于同一发生性土类,不同立地下土壤溶液溶解铝含量有明显差异,而溶解性有机碳的差异相对较小,在6种树木立地中,香柏立地表层土壤溶解铝含量达4.95mg·kg-1,为其它针叶林立地的2倍,是阔叶林立地的3倍。溶解铝积累与土壤酸化强度有密切关系,但溶解有机碳趋向于形成抑制毒性的单核铝,供试的不同立地土壤可以按溶液铝化学特点分为不同的生态化学类型。  相似文献   

11.
细根分解受根序和土壤深度的潜在影响。使用根序法分根,将落叶松Larix gmelini根系分为两类:一级根、二级根为一类(1—2级根),即低级根;三级根和四级跟为另一类(3—4级根),即高级根。采用埋袋法对落叶松低级根和高级根在不同土壤深度(0—10、10—20 cm和20—30 cm)进行了为期862 d的分解实验,探讨不同根序细根分解规律,养分释放及其影响。结果表明:1—2级根的分解速率比3—4级分解速率慢,这种规律同时存在于不同深度的土壤中。在空间上,低级根和高级根的分解速率均随土壤深度的增加而降低,高级根的降低趋势更明显。随着分解时间的进行,各个土层之间的分解率在低级根之间差异更大。细根分解过程中,落叶松不同根序养分的释放特征不同。N释放速率总体上随细根根序增加而增大,随土壤深度的增加而降低。  相似文献   

12.
Recent evidence suggests that significantly more plant carbon (C) is stored below ground than existing estimates indicate. This study explores the implications for biome C pool sizes and global C fluxes. It predicts a root C pool of at least 268 Pg, 68% larger than previously thought. Although still a low-precision estimate (owing to the uncertainties of biome-scale measurements), a global root C pool this large implies stronger land C sinks, particularly in tropical and temperate forests, shrubland and savanna. The land sink predicted from revised C inventories is 2.7 Pg yr(-1). This is 0.1 Pg yr(-1) larger than current estimates, within the uncertainties associated with global C fluxes, but conflicting with a smaller sink (2.4 Pg yr(-1)) estimated from C balance. Sink estimates derived from C inventories and C balance match, however, if global soil C is assumed to be declining by 0.4-0.7% yr(-1), rates that agree with long-term regional rates of soil C loss. Either possibility, a stronger land C sink or widespread soil C loss, argues that these features of the global C cycle should be reassessed to improve the accuracy and precision of C flux and pool estimates at both global and biome scales.  相似文献   

13.
The contribution of below ground plant root tissue to soil carbon (C) pools is attracting considerable interest in the context of greenhouse gas mitigation options. A field experiment was conducted on a perennial ryegrass/white clover pasture in the Manawatu, New Zealand, to examine the effect of differing soil nitrogen (N) and phosphorus (P) fertility status on root dynamics. Root standing mass, shoot and root dry matter (DM) accumulation and root tissue decomposition were measured at 6–8 week intervals over one year at moderate (Olsen P?=?24, no added N) and high (Olsen P?=?49, 400 kgN ha?1y?1 added N) soil fertility levels. Shoot production was significantly greater in the high fertility treatment (2550 cf. 1890 gDM m?2y?1) but differences in root dynamics were confined to two periods in spring and winter. In late spring the pattern was for lower root mass (183 cf. 231 gDM m?2 between 0–80 mm depth) and higher root production (0.71 cf. 0.52 gDM m?2 d?1 between 0–120 mm depth) under higher fertility. In winter the reverse was observed. There is some evidence that the soil type used in the root in-growth cores underestimated root production values for this site by a factor of approx. one third. Short-term differences between the two fertiity treatments in standing root mass and root production did not lead to treatment differences in topsoil C and N changes over four years. This may reflect insufficient separation in the two soil fertility treatments and a low overall root tissue input to soil organic matter.  相似文献   

14.
《植物生态学报》2016,40(10):1064
Aims The objective of this paper was to quantify the seasonal variation of active soil organic carbon in the subtropical forests for better understanding of the underline mechanisms in controlling soil organic carbon storage and dynamics in natural and restored forests in the region. Methods The study was conducted in a one-hectare permanent plot at Dashanchong Forest Park in Changsha County, Hunan Province, China. Four types of subtropical forests were selected as our study sites: (1) Cunninghamia lanceolata plantation, (2) Pinus massoniana-Lithocarpus glaber mixed forest, (3) Choerospondias axillaries deciduous broad-leaved forest, and (4) L. glaber-Cyclobalanopsis glauca evergreen broad-leaved forest. The soil samples were taken from 0-15 cm and 15-30 cm depths within each of the forests from December 2011 to September 2012. Soil microbial biomass carbon (MBC), mineralized organic carbon (MOC), readily oxidized carbon (ROC), and dissolved organic carbon (DOC) were analyzed for their seasonal changes. Important findings There existed a considerable seasonal variations of soil MBC, MOC, ROC, DOC among the forests, with a similar patterns of active organic carbon fraction. Soil MBC, MOC and ROC were significantly higher in the summer and the autumn than those in the spring and winter, while soil DOC was higher in the spring, summer and winter than that in the autumn. The seasonal variations of different active organic carbon fractions appeared different within the same forest type. Significantly-positive correlations were found between soil MBC, MOC, ROC, DOC and soil moisture content, soil organic carbon (SOC), total N, hydrolysis N, total P (except for MBC, MOC and ROC in Cunninghamia lanceolata plantation), available P, but not between soil MBC, MOC, ROC, DOC concentrations and soil pH, total K and available K. The results indicated that the differences of exogenous carbon devotion, physicochemical properties were responsible for the significant differences of soil active organic carbon, and the growth rhythm of tree species, soil moisture content, the availability of nutrient (SOC, N and P), and the sources of soil active organic carbon fractions made a major contribution to seasonal variations of soil active organic carbon. Soil MBC, MOC, ROC, and DOC could be used as sensitivity indexes to assess the dynamics of soil C, N and P.  相似文献   

15.
2011年12月至2012年9月, 在湘中丘陵区杉木(Cunninghamia lanceolata)人工林、马尾松(Pinus massoniana)-石栎(Lithocarpus glaber)针阔混交林、南酸枣(Choerospondias axillaries)落叶阔叶林、石栎(Lithocarpus glaber)-青冈(Cyclobalanopsis glauca)常绿阔叶林1 hm2的长期定位观测样地, 采集0-15 cm、15-30 cm土层土壤样品, 测定土壤微生物生物量碳(MBC)、可矿化有机碳(MOC)、易氧化有机碳(ROC)、水溶性有机碳(DOC)含量, 分析4种森林土壤MBC、MOC、ROC、DOC含量的季节变化特征, 为揭示天然林保护与恢复对土壤有机碳(SOC)库的影响机理过程提供基础数据。结果表明: 森林土壤MBC、MOC、ROC、DOC含量具有明显的季节动态, 且不同森林同一土壤活性有机碳组分的季节变化节律基本一致, MBC、MOC、ROC含量表现为夏、秋季较高, 春、冬季较低; DOC含量表现为春、夏、冬季较高, 秋季最低; 同一森林不同土壤活性有机碳组分含量的季节变化节律不同; 土壤MBC、MOC、ROC、DOC含量与土壤自然含水率、SOC、全N、水解N、全P (除杉木人工林土壤MBC、MOC、ROC外)、速效P含量显著或极显著正相关, 与土壤pH值、全K、速效K含量相关性不显著, 表明不同森林类型外源碳库投入和土壤理化性质的差异是导致不同森林类型土壤活性有机碳含量差异显著的主要原因, 该区域森林土壤活性有机碳各组分含量的季节变化与各森林类型组成树种生长节律及其土壤水分含量和SOC、N、P的可利用性, 以及土壤活性有机碳各组分的来源有关, 森林土壤MBC、MOC、ROC、DOC含量可作为衡量森林土壤C、N、P动态变化的敏感性指标。  相似文献   

16.
17.
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC, Mg C ha?1 yr?1). Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC, followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC. The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process‐based SOC models.  相似文献   

18.
Beta-thujaplicin Is a natural troponoid with strong antifungal, antiviral, and anticancer activities. Beta-thujaplicin production in yeast elicitor-treated Cupressus lusitanica cell culture and its relationships with reactive oxygen species (ROS) and nitric oxide (NO) production and hypersensitive cell death were investigated. Superoxide anion radical (O2*-) induced cell death and inhibited beta-thujaplicin accumulation, whereas hydrogen peroxide (H2O2) induced beta-thujaplicin accumulation but did not significantly affect cell death. Both elicitor and O2*- induced programmed cell death, which can be blocked by protease inhibitors, protein kinase inhibitors, and Ca2+ chelators. Elicitor-induced NO generation was nitric oxide synthase (NOS)-dependent. Inhibition of NO generation by NOS inhibitors and NO scavenger partly blocked the elicitor-induced beta-thujaplicin accumulation and cell death, and NO donors strongly induced cell death. Interaction among NO, H2O2, and O2*- shows that NO production and H2O2 production are interdependent, but NO and O2*- accumulation were negatively related because of coconsumption of NO and O2*-. NO- and O2*- -induced cell death required each other, and both were required for elicitor-induced cell death. A direct interaction between NO and O2*- was implicated in the production of a potent oxidant peroxynitrite, which might mediate the elicitor-induced cell death.  相似文献   

19.
不同恢复类型植被细根分布及与土壤理化性质的耦合关系   总被引:6,自引:0,他引:6  
吕渡  杨亚辉  赵文慧  雷斯越  张晓萍 《生态学报》2018,38(11):3979-3987
针对陕北典型黄土丘陵区吴起县主要人工造林和自然封育植被恢复类型,确定5、15年和40年不同退耕年限下的沙棘、山杏及自然恢复草地样地,进行剖面采样,分析不同植被恢复类型下细根生物量、土壤理化性质,研究了不同恢复类型和不同年限植被细根生物量与土壤理化性质随时间的变异规律及耦合关系。结果表明,(1)总体上,主要造林树种和退耕自然封育草地细根生物量都随林龄和退耕年限的增长呈增加趋势,同年限人工造林树种细根生物量大于自然恢复的草地,不同植被群落细根生物量均表现出随着深度的增加呈指数递减规律。(2)自然封育的草地生态系统土壤含水量大于人工山杏林和沙棘林。人工造林和自然封育植被恢复下,土壤团聚体稳定性都随退耕年限的增加而增强,有机质、全氮、全磷含量也都呈增加趋势,土壤平均含水量则呈减小趋势。(3)细根生物量与土壤容重和团聚体稳定性显著相关,植物细根在土壤结构改善中起到了重要作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号