首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The influence of the arbuscular mycorrhizal (AM) fungus, Glomus fasciculatum, on the growth, heat stress responses and the antioxidative activity in cyclamen (Cyclamen persicum Mill.) plants was studied. Cyclamen plants (inoculated or not with the AM fungus) were placed in a commercial potting media at 17–20 °C for 12 weeks in a greenhouse and subsequently subjected to two temperature conditions in a growth chamber. Initially, plants were grown at 20 °C for 4 weeks as a no heat stress (HS?) condition, followed by 30 °C for another 4 weeks as a heat stress (HS+) condition. Different morphological and physiological growth parameters were compared between G. fasciculatum-inoculated and noninoculated plants. The mycorrhizal symbiosis markedly enhanced biomass production and HS + responses in plants compared to that in the controls. A severe rate of leaf browning (80–100 %) was observed in control plants, whereas the mycorrhizal plants showed a minimum rate of leaf browning under HS + conditions. The mycorrhizal plants showed an increase activity of antioxidative enzymes such as superoxide dismutase and ascorbate peroxidase, as well as an increase in ascorbic acid and polyphenol contents. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity also showed a greater response in mycorrhizal plants than in the control plants under each temperature condition. The results indicate that in cyclamen plants, AM fungal colonisation alleviated heat stress damage through an increased antioxidative activity and that the mycorrhizal symbiosis strongly enhanced temperature stress tolerance which promoted plant growth and increased the host biomass under heat stress.  相似文献   

3.
The effect of tall fescue turf on growth, flowering, nodulation, and nitrogen fixing potential of Lupinus albifrons Benth. was examined for greenhouse and field grown plants. No allelopathic effect was observed for lupine plants treated with tall fescue leachates. The nitrogen-fixing potential measured by nodule dry weight and acetylene reduction rates was not significantly affected by tall fescue turf.Both the greenhouse and field studies showed that the growth, sexual reproductive allocation and number of inflorescences were significantly reduced when lupine plants were grown with tall fescue. The root-length densities of tall fescue turf and lupine monoculture were measured. The tall fescue turf had 20 times higher root-length density (20 cm cm-3 soil) than the lupine plant monoculture. This suggests that intense competition at the root zone may be a dominant factor which limits the growth of the lupine plants.The flowering characters of the lupine plants were improved by phosphorus fertilization. Transplanting of older lupine plants into the turf substantially alleviated the tall fescue turf competitive effect.  相似文献   

4.
5.
Pre-inoculation of transplants with arbuscular mycorrhizal fungi may increase the in-field P uptake through an increased exploitation of the soil volume and, thereby, reduce the need for P fertilizer application. The objective of this study was to investigate how pre-inoculation influences the post-transplanting rate of mycorrhizae development, nutrient uptake and growth of field-grown leek plants (Allium porrum L.) at various P levels. Field experiments were carried out in normal field soils supporting high crop production levels. This work demonstrated that pre-inoculation increased the post-transplanting rate of mycorrhizae development, the shoot and root concentration of P, Zn, Cu, and N, and the plant production. Therefore, module-raised pre-inoculated transplants should be adopted as a management strategy in leek production in order to ensure sufficient mycorrhization of young plants for uptake of P and, thereby, reduce the need for application of fertilizer P.  相似文献   

6.
Spinach plants ( Spinacia oleracea L. cv. Subito) were grown in a complete nutrient solution under ample light intensity (14 h day−1 at 660 μmol m−2 s−1) before being transferred either to a minus-N solution (experiment 1), or to limiting light conditions (6 h day−1 at 220 μmol m−2 s−1; experiment 2). Shoot growth in experiment 1 decreased significantly from 0.24 day−1 to 0.07 day−1 after the fourth day of transfer. Root relative growth rate increased after 1 day from 0.25 to 0.31 day−1, but decreased on the fifth day after transfer to 0.11 day−1. Shoot growth in experiment 2 decreased significantly from 0.25 to 0.17 day−1 after the fourth day of transfer, while root growth decreased to half of its original level (0.25 day−1) already on the second day. Growth substrate levels in the plants (free sugars, free amino acids) and starch levels depended on the plant age, the moment in the diurnal cycle, and the imposed treatment. Fluctuations in shoot growth or root growth resulting from the light or N limitation could not be explained by a correspondent increase or decrease in the levels of growth substrates. The hypotheses underlying the functional equilibrium theory, assuming shoot and root growth to be controlled by N- and C-containing substrates respectively, and several other growth and partitioning models are therefore questioned. A neglect of the osmotic role of the free sugars in these models might be the explanation for this.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) can transfer nitrogen (N) to host plants, but the ecological relevance is debated, as total plant N and biomass do not generally increase. The extent to which the symbiosis is mutually beneficial is thought to rely on the stoichiometry of N, phosphorus (P) and carbon (C) availability. While inorganic N fertilization has been shown to elicit strong mutualism, characterized by improved plant and fungal growth and mineral nutrition, similar responses following organic N addition are lacking. Using a compartmented microcosm experiment, we determined the significance to a mycorrhizal plant of placing a 15N‐labelled, nitrogen‐rich patch of organic matter in a compartment to which only AMF hyphae had access. Control microcosms denied AMF hyphal access to the patch compartment. When permitted access to the patch compartment, the fungus proliferated extensively in the patch and transferred substantial quantities of N to the plant. Moreover, our data demonstrate that allowing hyphal access to an organic matter patch enhanced total plant N and P contents, with a simultaneous and substantial increase in plant biomass. Furthermore, we demonstrate that organic matter fertilization of arbuscular mycorrhizal plants can foster a mutually beneficial symbiosis based on nitrogen transfer, a phenomenon previously thought irrelevant.  相似文献   

8.
The allelopathic effect of A. altissima and the nitrogen fixing ability of R. pseudoacacia make the interaction between these two species important to community dynamics. A replacement series greenhouse experiment was used to investigate the type of interaction between seedlings of A. altissima and R. pseudoacacia at high and low soil nutrition states. Also, seeds of A. altissima from its native (China) and invasive ranges (USA) were used to compare the effect of the different seed sources on the interaction with R. pseudoacacia. Robinia pseudoacacia was the better competitor. The presence of A. altissima significantly inhibited nodulation of R. pseudoacacia roots. In summary, in low nutrient early succession sites, seedlings of R. pseudoacacia and A. altissima will coexist and R. pseudoacacia will be the better competitor. However, A. altissima can increase its competitive ability by inhibiting nitrogen fixation by R. pseudoacacia. Differences between the competitive ability of the Chinese and US seed lots of A. altissima did not support the rapid evolution theory for invasive species success.  相似文献   

9.
Agriculture is the primary supplier of food and fibre for humankind and maintaining its sustainability is important. Conventional agriculture (CA) compensates for its unsustainability with external inputs such as fertilisers and pesticides. Organic Agriculture (OA) aims at improving sustainability of the agricultural sector, based on amending soil with organic matter, crop rotation and careful integrated pest management. Mycorrhizae play a major role in the uptake of P and Zn in different crops. It leads to induced resistance against soil-borne and foliar diseases; to improved soil physical characteristics and to better drought and salt stress tolerance, all are important for successful OA in semi-arid conditions. Most of the mycorrhiza-related literature originated from temperate regions. The aims of this review are to highlight the specific potential benefits organically-grown crops can draw from mycorrhizal association under semi-arid conditions; to highlight soil management effects on mycorrhiza under these conditions; to understand the constraints to the use of mycorrhiza in OA under semi-arid conditions and to suggest ways to prevail over these constraints.  相似文献   

10.
Flavonoids are a group of secondary metabolites derived from the phenylpropanoid pathway. They are ubiquitous in the plant kingdom and have many diverse functions including key roles at different levels of root endosymbioses. While there is a lot of information on the role of particular flavonoids in the Rhizobium-legume symbiosis, yet their exact role during the establishment of arbuscular mycorrhiza and actinorhizal symbioses still remains unclear. Within the context of the latest data suggesting a common symbiotic signaling pathway for both plant-fungal and plant bacterial endosymbioses between legumes and actinorhiza-forming fagales, this mini-review highlights some of the recent studies on the three major types of root endosymbioses. Implication of the molecular knowledge of endosymbioses signaling and genetic manipulation of flavonoid biosynthetic pathway on the development of strategies for the transfer and optimization of nodulation are also discussed.  相似文献   

11.
12.
13.
Several recent studies have shown that plant invasions can occur in resource-poor and relatively undisturbed habitats. It is, therefore, important to investigate whether and how life-history traits of species invasive in such habitats differ from those of species that are only invasive in disturbed and resource rich habitats. We compared the growth of seedlings of native and invasive tree species from nutrient-poor secondary forests in the tropical Seychelles. We hypothesised that the relative performance of the two groups would change predictably along resource gradients, with native species performing better at low levels of resource availability and invasive species performing better at higher levels. To test this hypothesis, we performed a common garden experiment using seedlings of six invasive and seven native tree species grown under three levels of light (65, 11 and 3.5% of ambient light) and two of nutrients (low and high). Due to large variation among species, differences in growth rates (RGR) were not significant among seedlings of the native and the invasive species. However, seedlings of the invasive species showed higher specific leaf areas (SLA) and higher leaf nutrient contents than seedlings of the native species. They also exhibited greater plasticity in biomass and nutrient allocation (i.e., greater plasticity in LAR, RSR and leaf nutrient contents) in response to varying resource availability. However, differences between the mean values of these parameters were generally small compared with variation within groups. We conclude that successful invaders on nutrient-poor soils in the Seychelles are either stress-tolerant, possessing growth traits similar to those of the native species, or fast-growing but adapted to nutrient-poor soils. In contrast, the more typical, fast-growing alien species with no particular adaptations to nutrient-poor soils seem to be restricted to relative nutrient-rich sites in the lowlands. The finding—that some introduced species thrive in resource-poor habitats—suggests that undisturbed habitats with low resource availability may be less resistant to plant invasions than was previously supposed.  相似文献   

14.
Hatimi  Abdelhakim 《Plant and Soil》1999,216(1-2):93-101
The behaviour of Acacia cyanophylla Lind. plants submitted to salinity stress was followed in the greenhouse. The plants were associated with indigenous symbiotic microorganisms isolated from the coastal dunes of the Souss-Massa region. A two months period of salinity had a large negative impact on plant growth and acquisition of macro nutrients. However, the study underlined the role of the microbial inoculum for the plant in the achievement of salt tolerance. An isolate of Bradyrhizobium sp., RCM6 (R1), originating from the Massa dunes, was highly efficient in improving growth and nutrition of the A. cyanophylla. Double inoculation with the rhizobia and an endomycorrhizal complex, isolated from the Lamzar dunes had a clear additional positive effect, i.e. the fungi further increased the tolerance of the A. cyanophylla plants to salinity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
采用有机基质栽培,选用盐敏感黄瓜品种‘津春2号’为试验材料,研究了丛枝菌根真菌(AMF)对盐胁迫下黄瓜植株生长、矿质营养吸收、果实品质和产量的影响.结果表明:接种AMF可以有效促进黄瓜植株生长和对矿质营养的吸收,提高果实产量和改善蔬菜营养品质;盐胁迫下,黄瓜生长受到抑制,植株体内N、P、K、Cu、Zn含量减少和K+/Na+降低,果实产量和可溶性蛋白、总糖、Vc、硝酸盐含量下降;接种AMF可缓解盐胁迫对黄瓜生长的抑制作用,使植株体内N、P、K、Cu和Zn含量分别比对照提高7.3%、11.7%、28.2%、13.5%和9.9%,K+/Na+、果实产量、可溶性蛋白、总糖、Vc含量明显提高,果实硝酸盐含量显著降低.表明AMF可通过促进盐胁迫下黄瓜植株对矿质营养的吸收,促进植株生长,增强植株对盐胁迫的耐性,进而提高其产量和改善营养品质.  相似文献   

16.
Significantly higher numbers of Gram-negative heterotrophic bacteria were present at the air-water interface (neston) of freshwater lakes than in the bulk water. Neuston bacteria were distinguished as a population distinct from bacteria in the bulk water by a higher incidence of pigmented colony types and significantly greater levels of multiple resistance to antibiotics and heavy metals. The incidence of plasmids in 236 neuston and 229 bulk water strains were similar (14 and 16.2%, respectively). Nine of 168 plasmid-free strains and 2 of 14 plasmid carrying strains, isolated from both bulk water and neuston, acted as recipients of plasmid R68.45 in plate matings with aPseudomonas aeruginosa donor strain PAO4032 at 21°C, but at frequencies below that of matings with a restriction-minus recipient strain ofP. aeruginosa, strain PAO1168. In a model system composed of nutrient-free synthetic lake water, plasmid R68.45 was shown to transfer betweenP. aeruginosa strains at frequencies between 10−3 and 10−5. Transconjugants were detected about 100 times more frequently at the interface than in the bulk water, which in part reflected a greater enrichment of the donor at this site. None of the aquatic isolates were able to act as recipients of plasmid R68.45 in this model system with strain PAO4032 as donor. The results suggest that under nutrient deprived conditions, the spread of plasmid R68.45 and similar plasmids by lateral transfer into this particular aquatic population would be a rare event.  相似文献   

17.
Abstract Plants with crassulacean acid metabolism (CAM) are increasing their abundance in drylands worldwide. The drivers and mechanisms underlying the increased dominance of CAM plants and CAM expression (i.e., nocturnal carboxylation) in facultative CAM plants, however, remain poorly understood. We investigated how nutrient and water availability affected competition between Mesembryanthemum crystallinum (a model facultative CAM species) and the invasive C3 grass Bromus mollis that co‐occur in California's coastal grasslands. Specifically we investigated the extent to which water stress, nutrients, and competition affect nocturnal carboxylation in M. crystallinum. High nutrient and low water conditions favored M. crystallinum over B. mollis, in contrast to high water conditions. While low water conditions induced nocturnal carboxylation in 9‐week‐old individuals of M. crystallinum, in these low water treatments, a 66% reduction in nutrient applied over the entire experiment did not further enhance nocturnal carboxylation. In high water conditions M. crystallinum both alone and in association with B. mollis did not perform nocturnal carboxylation, regardless of the nutrient levels. Thus, nocturnal carboxylation in M. crystallinum was restricted by strong competition with B. mollis in high water conditions. This study provides empirical evidence of the competitive advantage of facultative CAM plants over grasses in drought conditions and of the restricted ability of M. crystallinum to use their photosynthetic plasticity (i.e., ability to switch to CAM behavior) to compete with grasses in well‐watered conditions. We suggest that a high drought tolerance could explain the increased dominance of facultative CAM plants in a future environment with increased drought and nitrogen deposition, while the potential of facultative CAM plants such as M. crystallinum to expand to wet environments is expected to be limited.  相似文献   

18.
The stay-green mutation of the nuclear gene sid inhibits chlorophyll degradation during leaf senescence in grasses. Decreased productivity is expected under conditions of limited external N availability, due to the higher retention of N in senescent tissues. However, this has not been reported when plants are grown at limiting low external concentrations of N. In the present study a different approach was taken, based on the relative addition rate method for defining limiting N supply. Wild-type and stay-green genotypes of Lolium perenne L. were grown for 30 days in flowing solution culture and then supplied with NO3- on an hourly basis over 35 days at relative addition rates (RARs) of 0.03, 0.06, 0.09 and 0.12 day-1, ranging from severe N limitation to optimal supply. Plants were steady-state labelled with 15NO3- prior to RAR treatments, then switched to 14NO3- to allow measurement of the re-distribution of N absorbed prior to RAR control. Following acclimation, relative growth rates (RGRs) approached the corresponding RAR, but were significantly lower for stay-green than wild-type at RARs of 0.03 and 0.06 day-1. Tiller numbers were lower in stay-green plants after 35 days at all RARs except 0.12 day-1. Concentrations of total N in senescent laminae of stay-green plants exceeded those in wild-type plants by a similar margin (4.8-6.8 mg g-1 DW) irrespective of RAR. Maximum nitrogen productivity (Pn) was 3.9 g DW g-1 N day-1 (Nmin = 7.1 mg g-1 DW) in wild-type plants, and 5.1 g DW g-1 N day-1 (Nmin = 10.7 mg g-1 DW) in stay-green plants. The higher N productivity of stay-green plants indicated these plants used a smaller pool of metabolically available N more efficiently in biosynthesis compared with wild-type plants. The retention of N, absorbed prior to RAR treatments, in senescent laminae was significantly higher in stay-green plants at RAR of 0.03 day-1 after day 21 (i.e. 20% versus 15% of the total N recovered). However, in terms of the whole N economy of the plant the margin represented only 1.7% of the total N content on day 35.  相似文献   

19.

Background and aims

The biological restoration of saline habitats could be achieved by using halophyte plant species together with adapted arbuscular mycorrhizal fungi (AMF). An interesting plant to be used in restoration of saline environments, Asteriscus maritimus, is highly mycotrophic. The aim of this study was to assess the effectiveness of native and allochthonous AMF to enhance the establishment and growth of the halophyte A. maritimus under saline conditions.

Methods

We studied the symbiotic effectiveness of four AMF strains (three native fungal isolates from a saline soil and one allochthonous, from collection) in A. maritimus subjected to increasing salinity stress. We measured plant physiological parameters by which AMF may ameliorate the detrimental effects of salinity stress.

Results

A. maritimus plants showed a high mycorrhizal dependency, even in absence of salt stress. Plants inoculated with native AMF had higher shoot dry weight, efficiency of photosystem II, stomatal conductance and accumulation of glutathione than those inoculated with the collection AMF at the highest level of salinity. Moreover, at this salt level, only 30 % of A. maritimus plants inoculated with the collection AMF survived, while with the three native AMF, the rate of survival was 100 %.

Conclusions

Results points out the importance of native AMF inoculation in the establishment, survival and growth of A. maritimus plants. Inoculation with these native AMF enhanced A. maritimus salt tolerance by increasing efficiency of photosystem II, stomatal conductance and glutathione content and by reducing oxidative damage. Thus, the use of adequate native AMF inocula could be a critical issue for success in recovering saline degraded areas.  相似文献   

20.
采用盆栽方法研究了增氮条件下丛枝菌根真菌(AMF)对无芒稗(Echinochloa crusgallivar.mitis L.)和陆稻(Oryza sativa L.)相互作用的调节.结果表明:在单种条件下,无芒稗的菌根侵染率增加,陆稻的菌根侵染率降低;无AMF和接种AMF处理陆稻的生物量分别提高13.48%和42.35%,总磷吸收分别提高2.55%和4.07%,总氮吸收分别提高62.09%和30.35%;无芒稗的生物量分别提高15.65%和20.24%,总磷吸收分别提高4.06%和3.88%,总氮吸收分别提高30.35%和15.10%.在混种条件下,无芒稗的菌根侵染率增加,而陆稻无显著变化;无AMF和接种AMF的无芒稗与陆稻的生物量比值降低,总氮吸收比值无显著变化,无AMF处理的总磷吸收比值增加,而接种AMF处理降低.表明增氮条件下AMF提高了无芒稗对陆稻的竞争.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号