首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Crop species grown in a diversified crop rotation can influence soil N dynamics to varying degrees due to differences in the quantity and quality of the residues returned to the soil. The aim of this study was to quantify the contribution of N rhizodeposition by canola (Brassica napus L.) and pea (Pisum sativum L.) to the crop residue N balance and soil inorganic N pool.

Methods

Canola and pea were grown in a soil-sand mixture and were subject to cotton-wick 15N labeling in a greenhouse experiment. Nitrogen-15 recovered in the soil and roots were used to estimate N rhizodeposition.

Results

Belowground N, including root N and N rhizodeposits, comprised 70 % and 61 % of total crop residue N for canola and pea, respectively. Canola released the greatest amount of total root-derived N to the soil, which was related to greater root biomass production by canola. However, root-derived N in the soil inorganic N pool was greater under pea (13 %) than canola (4 %).

Conclusions

Our results show a significant belowground N contribution to total crop residue from pea and canola. Further investigation is required to determine whether input of the more labile N rhizodeposits of pea improves soil N supply to succeeding crops or increases the potential for N loss from the soil system relative to canola.  相似文献   

2.

Background and aims

Long-term use of copper (Cu) based fungicides has accelerated Cu contamination in soils and subsequently its export to the environment. Field trials were conducted in representative commercial citrus groves in the Indian River area, South Florida to evaluate the effectiveness of calcium water treatment residue (Ca-WTR) for stabilizing Cu in soil and its subsequent influence on Cu loading in surface runoff and citrus growth.

Methods

Soil and surface runoff samples were monitored over a 3-year period on two field sites under navel orange and Ruby Red grapefruit production.

Results

Soil amendment with Ca-WTR generally raised soil pH and soil available Ca, but decreased available Cu. The mean concentrations of Cu in surface runoff water were reduced by 36 % and 28 % for the navel orange and grapefruit site, respectively. The results of species distribution of Cu in the runoff water using MINTEQ indicated that the application of Ca-WTR decreased the concentrations of free Cu2+ by 61 % and 39 % for the two sites. Fruit quality and yields were improved, because of the improved nutrient availability and other soil conditions.

Conclusions

The results indicate that in situ application of Ca-WTR may provide a cost-effective remediation method for the Cu-contaminated soils without affecting citrus production.  相似文献   

3.

Aims

The efficient management of phosphorus (P) in cropping systems remains a challenge due to climate change. We tested how plant species access P pools in soils of varying P status (Olsen-P 3.2–17.6 mg?kg?1), under elevated atmosphere CO2 (eCO2).

Methods

Chickpea (Cicer arietinum L.) and wheat (Triticum aestivum L.) plants were grown in rhizo-boxes containing Vertosol or Calcarosol soil, with two contrasting P fertilizer histories for each soil, and exposed to ambient (380 ppm) or eCO2 (700 ppm) for 6 weeks.

Results

The NaHCO3-extractable inorganic P (Pi) in the rhizosphere was depleted by both wheat and chickpea in all soils, but was not significantly affected by CO2 treatment. However, NaHCO3-extractable organic P (Po) accumulated, especially under eCO2 in soils with high P status. The NaOH-extractable Po under eCO2 accumulated only in the Vertosol with high P status. Crop species did not exhibit different eCO2-triggered capabilities to access any P pool in either soil, though wheat depleted NaHCO3-Pi and NaOH-Pi in the rhizosphere more than chickpea. Elevated CO2 increased microbial biomass C in the rhizosphere by an average of 21 %. Moreover, the size in Po fractions correlated with microbial C but not with rhizosphere pH or phosphatase activity.

Conclusion

Elevated CO2 increased microbial biomass in the rhizosphere which in turn temporally immobilized P. This P immobilization was greater in soils with high than low P availability.  相似文献   

4.

Background and aims

As plants approach maturity and start to senesce, the primary sink for phosphorus (P) is the seed but it is unclear how plant P status affects the resulting P concentration and speciation in the seed and remaining plant parts of the residues. This study was established to measure how P speciation in different parts of wheat and canola is affected by plant P status.

Methods

Wheat and canola grown in the glasshouse were supplied three different P rates (5, 30 and 60 kg P ha?1 equivalent). At physiological maturity, plants were harvested and P speciation was determined for all plant parts (root, stem, leaf, chaff/pod and seed) and rates of P application, using solution 31P nuclear magnetic resonance (NMR) spectroscopy.

Results

Phytate was the dominant form of P in seed whereas orthophosphate was the dominant form of P in other plant parts. The distribution of P species varied with P status for canola but not for wheat. The phytate content of wheat chaff increased from 10 to 45 % of total P as the P rate increased. Canola pods did not show a similar trend, with most P present as orthophosphate.

Conclusions

Although minor differences were observed in P speciation across the three P application rates and plant parts, the effect of this on P cycling from residues into soil is likely to be relatively minor in comparison to the overall contribution of these residues to soil P pools. This glasshouse experiment shows the dominant P form in crop residues that is returned to soil after harvest is orthophosphate, regardless of plant P status.  相似文献   

5.

Background and aims

Measures of phosphorus (P) in roots recovered from soil underestimate total P accumulation below-ground by crop species since they do not account for P in unrecovered (e.g., fine) root materials. 33P-labelling of plant root systems may allow more accurate estimation of below-ground P input by plants.

Methods

Using a stem wick-feeding technique 33P-labelled phosphoric acid was fed in situ to canola (Brassica napus) and lupin (Lupinus angustifolius) grown in sand or loam soils in sealed pots.

Results

Recovery of 33P was 93 % in the plant-soil system and 7 % was sorbed to the wick. Significantly more 33P was allocated below-ground than to shoots for both species with 59–90 % of 33P measured in recovered roots plus bulk and rhizosphere soil. 33P in recovered roots was higher in canola than lupin regardless of soil type. The proportion of 33P detected in soil was greater for lupin than canola grown in sand and loam (37 and 73 % lupin, 20 and 23 % canola, respectively). Estimated total below-ground P accumulation by both species was at least twice that of recovered root P and was a greater proportion of total plant P for lupin than canola.

Conclusion

Labelling roots using 33P via stem feeding can empower quantitative estimates of total below-ground plant P and root dry matter accumulation which can improve our understanding of P distribution in soil-plant systems.
  相似文献   

6.

Background and purpose

Rapid increases in atmospheric carbon dioxide concentration ([CO2]) may increase crop residue production and carbon: nitrogen (C:N) ratio. Whether the incorporation of residues produced under elevated [CO2] will limit soil N availability and fertilizer N recovery in the plant is unknown. This study investigated the interaction between crop residue incorporation and elevated [CO2] on the growth, grain yield and the recovery of 15N-labeled fertilizer by wheat (Triticum aestivum L. cv. Yitpi) under controlled environmental conditions.

Methods

Residue for ambient and elevated [CO2] treatments, obtained from wheat grown previously under ambient and elevated [CO2], respectively, was incorporated into two soils (from a cereal-legume rotation and a cereal-fallow rotation) 1 month before the sowing of wheat. At the early vegetative stage 15N-labeled granular urea (10.22 atom%) was applied at 50 kg?N ha?1 and the wheat grown to maturity.

Results

When residue was not incorporated into the soil, elevated [CO2] increased wheat shoot (16 %) and root biomass (41 %), grain yield (19 %), total N uptake (4 %) and grain N removal (8 %). However, the positive [CO2] fertilization effect on these parameters was absent in the soil amended with residue. In the absence of residue, elevated [CO2] increased fertilizer N recovery in the plant (7 %), but when residue was incorporated elevated [CO2] decreased fertilizer N recovery.

Conclusions

A higher fertilizer application rate will be required under future elevated [CO2] atmospheres to replenish the extra N removed in grains from cropping systems if no residue is incorporated, or to facilitate the [CO2] fertilization effect on grain yield by overcoming N immobilization resulting from residue amendment.  相似文献   

7.

Background and aims

The potential use of a metal-tolerant sunflower mutant line for both biomonitoring and phytoremediating a Cu-contaminated soil series was investigated.

Methods

The soil series (21–1,170 mg Cu kg?1) was sampled in field plots at control and wood preservation sites. Sunflowers were cultivated 1 month in potted soils under controlled conditions.

Results

pH and dissolved organic matter influenced Cu concentration in the soil pore water. Leaf chlorophyll content and root growth decreased as Cu exposure rose. Their EC10 values corresponded to 104 and 118 μg Cu L?1 in the soil pore water, 138 and 155 mg Cu kg?1 for total soil Cu, and 16–18 mg Cu kg?1 DW shoot. Biomass of plant organs as well as leaf area, length and asymmetry were well correlated with Cu exposure, contrary to the maximum stem height and leaf water content.

Conclusions

Physiological parameters were more sensitive to soil Cu exposure than the morphological ones. Bioconcentration and translocation factors and distribution of mineral masses for Cu highlighted this mutant as a secondary Cu accumulator. Free Cu2+ concentration in soil pore water best predicted Cu phytoavailability. The usefulness of this sunflower mutant line for biomonitoring and Cu phytoextraction was discussed.  相似文献   

8.

Aims

Reintroductions of coarse woody debris (CWD) to Australia’s temperate eucalypt woodlands have been proposed to address the paucity of CWD in these landscapes. This study aimed to quantify the effects of CWD on surface soils.

Methods

Values of C, N, C:N, P, NO3 ?, NH4 +, pH and electrical conductivity (EC) were measured adjacent to, and at reference distances from CWD. Soils were measured at depths of 0–1 cm, 1–3 cm and 3–5 cm for 12 individual CWD samples of varying decay classes and diameters. A linear mixed model was used to test the effects of the presence of CWD, soil depth and CWD decay class and diameter.

Results

Significantly larger values for C, N, C:N, P, NO3 ?, EC, and significantly smaller values for pH were found adjacent to CWD. The greatest impact of CWD was on the upper most surface soil. CWD decay class and diameter had little influence on the measured soil characteristics.

Conclusion

This is the first quantitative determination of the effects of eucalypt CWD on woodland soils in Australia. The effect of added CWD is rapid, occurring after just 2 years. The results suggest that the effects are due to the structural properties of CWD.  相似文献   

9.

Aims

A comparison was performed between plant species to determine if extractable, rather than total soil Se, is more effective at predicting plant Se accumulation over a full growing season.

Methods

Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were sown in potted soil amended with 0, 0.1, 1.0, or 5.0 mg kg?1 Se as SeO4 2? or SeO3 2?. In addition, SeO4 2?-amended soils were amended with 0 or 50 mg kg?1 S as SO4 2?. Soils were analyzed for extractable and total concentration of Se ([Se]). Twice during the growing season plants were harvested and tissue [Se] was determined.

Results

Plants exposed to SeO3 2? accumulated the least Se. Fitted predictive models for whole plant accumulation based on extractable soil [Se] were similar to models based on total [Se] in soil (R2?=?0.73 or 0.74, respectively) and selenium speciation and soil [S] were important soil parameters to consider. As well, soil S amendments limited Se toxicity.

Conclusions

Soil quality guidelines (SQGs) based on extractable Se should be considered for risk assessment, particularly when Se speciation is unknown. Predictive models to estimate plant Se uptake should include soil S, a modifier of Se accumulation.  相似文献   

10.

Aims

Agricultural soils in semiarid Mediterranean areas are characterized by low organic matter contents and low fertility levels. Application of crop residues and/or manures as amendments is a cost-effective and sustainable alternative to overcome this problem. However, these management practices may induce important changes in the nitrogen oxide emissions from these agroecosystems, with additional impacts on carbon dioxide emissions. In this context, a field experiment was carried out with a barley (Hordeum vulgare L.) crop under Mediterranean conditions to evaluate the effect of combining maize (Zea mays L.) residues and N fertilizer inputs (organic and/or mineral) on these emissions.

Methods

Crop yield and N uptake, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification capacity, N2O, NO and CO2 fluxes were measured during the growing season.

Results

The incorporation of maize stover increased N2O emissions during the experimental period by c. 105 %. Conversely, NO emissions were significantly reduced in the plots amended with crop residues. The partial substitution of urea by pig slurry reduced net N2O emissions by 46 and 39 %, with and without the incorporation of crop residues respectively. Net emissions of NO were reduced 38 and 17 % for the same treatments. Molar DOC:NO 3 ? ratio was found to be a robust predictor of N2O and NO fluxes.

Conclusions

The main effect of the interaction between crop residue and N fertilizer application occurred in the medium term (4–6 month after application), enhancing N2O emissions and decreasing NO emissions as consequence of residue incorporation. The substitution of urea by pig slurry can be considered a good management strategy since N2O and NO emissions were reduced by the use of the organic residue.  相似文献   

11.

Background and aims

Large portions of the deforested areas in Southeast Asia have been ultimately replaced by the invasive grass Imperata cylindrica, but the dynamics of soil organic matter (SOM) during such land transitions are poorly understood. This study presents SOM dynamics in density and particle-size fractions following rainforest destruction and the subsequent establishment and persistence of Imperata grassland.

Methods

We examined soil C stock and natural 13C abundance in these fractions to depths of 100 cm. We predicted future soil C storage and evaluated C turnover rates in these fractions using a simple exponential model. Because soil texture strongly affects soil C storage, two chronosequences of soils differing in soil texture were compared (n?=?1 in each chronosequence).

Results

The clay-associated SOM increased in all soil layers (0–100 cm) along the forest-to-grassland chronosequence, whereas light-fraction SOM in the surface soil layer (0–5 cm) decreased.

Conclusions

In the surface layer, all SOM fractions exhibited rapid replacement of forest-derived C to grassland-derived C, indicating fast turnover. Meanwhile, δ13C values of the light fraction in the surface layer indicated that forest-derived charcoal and/or occluded low-density organic matter constituted unexpectedly large proportions of the light fraction. Mathematical modelling (0–50 cm) showed that grassland-derived C in the clay and silt fractions in all soil layers increased almost linearly for at least 50 years after grassland establishment. In the meantime, the forest-derived C stock in the clay fraction constituted 82 % of the total stable C pool at 0–50-cm depths even under steady-state conditions (t = ∞), indicating that residue of forest-derived SOM associated with clay largely contributed to preserving the soil C pool. Comparing soils with different soil textures, clay and silt particles in coarse-textured soil exhibited a substantially higher degree of organo-mineral interactions per unit volume of clay or silt compared to fine-textured soils.  相似文献   

12.

Background and aims

Changes in soil moisture availability seasonally and as a result of climatic variability would influence soil nitrogen (N) cycling in different land use systems. This study aimed to understand mechanisms of soil moisture availability on gross N transformation rates.

Methods

A laboratory incubation experiment was conducted to evaluate the effects of soil moisture content (65 vs. 100% water holding capacity, WHC) on gross N transformation rates using the 15N tracing technique (calculated by the numerical model FLUAZ) in adjacent grassland and forest soils in central Alberta, Canada.

Results

Gross N mineralization and gross NH 4 + immobilization rates were not influenced by soil moisture content for both soils. Gross nitrification rates were greater at 100 than at 65% WHC only in the forest soil. Denitrification rates during the 9 days of incubation were 2.47 and 4.91 mg N kg-1 soil d-1 in the grassland and forest soils, respectively, at 100% WHC, but were not different from zero at 65% WHC. In the forest soil, both the ratio of gross nitrification to gross NH 4 + immobilization rates (N/IA) and cumulative N2O emission were lower in the 65 than in the 100% WHC treatment, while in the grassland soil, the N/IA ratio was similar between the two soil moisture content treatments but cumulative N2O emission was lower at 65% WHC.

Conclusions

The effect of soil moisture content on gross nitrification rates differ between forest and grassland soils and decreasing soil moisture content from 100 to 65% WHC reduced N2O emissions in both soils.  相似文献   

13.

Background and aims

Nanoscale zero-valent iron (nZVI) application is a promising technology for degradation of chlorinated contaminants in soil. Plants also play an important role in soil remediation and nZVI should not adversely affect plants growing on treated soils. Large amounts of DDT are still found in certain soils and means to remediate these soils are limited. Our aims were to investigate the effect of nZVI on DDT degradation and evaluate possible negative effects of nZVI on plants.

Methods

Columns with spiked (20 mg DDT kg?1) soil were percolated with nZVI (1 g nZVI L?1) and leached with five pore volumes of water to assess leaching of nZVI and residual toxicity of leachates and soil to plants using seed germination and plant growth tests (barley, flax).

Results

Addition of nZVI led to degradation of 45 % of the added DDT. Percolation with water significantly oxidized and transported iron through the columns. The first leachates had negative effects on plant development, but after leaching with 4 pore volumes, neither soil nor leachates affected plant negatively.

Conclusions

nZVI is efficient for degradation of DDT and adverse effects of nZVI on plants seem ephemeral and are alleviated after oxidation mediated by percolating water.  相似文献   

14.

Background and aims

Crop residues and soil types play an important role in soil C and N storage. The objectives of this study were to quantify the effects of crop residue quality and interactions with soil type on soil C and N, in the short- and medium-term, and to determine the responses related to the priming effect (PE).

Methods

Residues of vetch (Vicia sativa L.), pea (Pisum sativum L.) and wheat (Triticum aestivum L.) crops with different chemical compositions and labelled with 13C and 15N were left to decompose on the surface of either a sandy-loam soil or a clay soil incubated under laboratory conditions at 25 °C for 360 days. We measured the total CO2-C and CO2-13C emitted during decomposition, the soil mineral N content and the amounts of 13C and 15N remaining in both the surface residue particles and the bulk soil.

Results

Over the short-term, the vetch residues decomposed faster than those of wheat and pea on the soil surface due to their more favourable chemical composition for biodegradation; after one year, however, this difference disappeared. We observed extra soil C mineralization in all cases, i.e., the PE was positive for all treatments and was directly related to the water-soluble (vetch > pea > wheat) and soil C contents (clay soil > sandy-loam soil). Conversely, the fate of the added 15N and net N mineralization differed considerably between the three residues and was strongly related to the initial N content of the residue.

Conclusions

Crop residue quality and soil type affected the soil PE and soil C balance but not the fate of crop residue-C after one year. Net soil N mineralization was observed in all crop residues, with large early differences (vetch > pea > wheat), which were maintained on a medium-term basis. Our results emphasize the need to jointly consider C and N dynamics as well as short- and medium-term effects to manage agricultural and environmental services provided by the recycling of crop residues to agricultural soils.
  相似文献   

15.

Background and aims

7Be has been used as a powerful tracer for estimating short-term soil redistribution by virtue of its short half-life. However, the existing conversion model associated with this radionuclide means that it can only be applied to bare soils because vegetation will intercept a large proportion of 7Be fallout. A modified model which takes into consideration the impact factor of vegetation was reported in this paper and the estimation of soil redistribution was compared by using both the conventional and the modified models.

Methods

Field experiment on 7Be distribution in above-ground grasses and soils was carried out on a 100 m2 grass-covered slope. The vegetation interception factor (P) was determined and the soil redistribution rates were calculated by using the previous model and the modified model.

Results

The result shows that nearly 40 % of the atmospherically deposited 7Be will be sequestered by leaf surfaces of herbaceous plants. Soil loss rates on grassland will be remarkably overestimated by using the previous model.

Conclusions

The net soil loss estimated from the modified model is more accurate than that derived from the conventional model and the modified model will be more appropriate to estimate soil redistribution rates on soils with significant vegetation cover by using 7Be technique.  相似文献   

16.

Background and Aims

The post-fire mineral N pool is relevant for plant regrowth. Depending on the plant regeneration strategies, this pool can be readily used or lost from the plant–soil system. Here we studied the retention of the post-fire mineral N pool in the system over a period of 12 years in three contrasted Mediterranean plant communities.

Methods

Three types of vegetation (grassland, mixed shrub-grassland and shrubland) were subjected to experimental fires. We then monitored the fate of 15?N-tracer applied to the mineral N pool in soils and in plants over 12 years.

Results

The plant community with legumes (mixed shrub-grasslands) showed the lowest soil retention of 15?N-tracer during the first 9 months after fire. Between years 6 and 12 post-fire, a drought promoted plant and litter deposition. Coinciding with this period, 15?N-recovery in the first 15 cm of the soil increased in all cases, except in mixed shrub-grassland. This lack of increase may be attributable to the input of impoverished 15?N plant residues and enhanced leaching and denitrification, possibly by N2-fixing shrubs. After the drought, the deepest soil layer showed large decreases in total N and 15?N-recovery, which were possibly caused by N mineralization.

Conclusions

Twelve years after the fires, plant communities without N2-fixing shrubs recycled a significant part of the N derived from the post-fire mineral N and this pool continued to interact in the plant–soil system.  相似文献   

17.

Aims

We characterized the runoff and erosion from a volcanic soil in an Austrocedrus chilensis forest affected by a wildfire, and we evaluated the effects of a mitigation treatment.

Methods

Rainfall simulations were performed in the unburned and burned forest, with and without vegetation cover, and under a mitigation treatment.

Results

After the wildfire, the mean infiltration rate decreased from 100 mm?h?1 in unburned soils to 51 and 64 mm?h?1 in the burned with and without litter and vegetation cover, respectively. The fast establishment of bryophytes accelerated the recovery of soil stability. Sediment production was negligible in the control plots (4.4 g?m?2); meanwhile in the burned plots, it was 118.7 g?m?2 and increased to 1026.1 g?m?2 in the burned and bare plots. Total C and N losses in the control plots were negligible, while in the burned and bare plots the organic C and total N removed were 98.25 and 1.64 g?m2, respectively. The effect of mitigation treatment was efficient in reducing the runoff, but it did not affect the sediment production.

Conclusions

These fertile volcanic soils promoted the recovery of vegetation in a short time after the wildfire, diminishing the risk of erosion.  相似文献   

18.

Background and aims

Continuous vegetable cultivation in greenhouses can easily induce soil degradation, which considerably affects the development of sustainable vegetable production. Recently, the reductive soil disinfestation (RSD) is widely used as an alternative to chemical soil disinfestations to improve degraded greenhouse vegetable soils. Considering the importance of nitrogen (N) for plant growth and environment effect, the internal N transformation processes and rates should be well investigated in degraded vegetable soils treated by RSD, but few works have been undertaken.

Methods

Three RSD-treated and three untreated degraded vegetable soils were chosen and a 15?N tracing incubation experiment differentially labeled with 15NH4NO3 or NH4 15NO3 was conducted at 25 °C under 50 % water holding capacity (WHC) for 96 h. Soil gross N transformation rates were calculated using a 15?N tracing model combined with Markov Chain Monte Carlo Metropolis algorithm (Müller et al. 2007), while the emissions of N2O and NO were also measured.

Results

RSD could significantly enhance the soil microbial NH4 + immobilization rate, the heterotrophic and autotrophic nitrification rates, and the NO3 ? turnover time. The ratio of heterotrophic nitrification to total inorganic N supply rate (mineralization + heterotrophic nitrification) increased greatly from 5.4 % in untreated vegetable soil to 56.1 % in treated vegetable soil. In addition, low release potential of NO and N2O was observed in RSD-treated vegetable soil, due to the decrease in the NO and N2O product ratios from heterotrophic and autotrophic nitrifications. These significant differences in gross N transformation rates, the supply processes and capacity of inorganic N, and the NO and N2O emissions between untreated and treated vegetable soils could be explained by the elimination of accumulated NO3 ?, increased pH, and decreased electrical conductivity (EC) caused by RSD. Noticeably, the NO3 ? consumption rates were still significantly lower than the NO3 ? production rates in RSD-treated vegetable soil.

Conclusions

Except for improving soil chemical properties, RSD could significantly alter the supply processes of inorganic N and reduce the release potential of N2O and NO in RSD-treated degraded vegetable soil. In order to retard the re-occurrence of NO3 ? accumulation, acidification and salinization and to promote the long-term productivity of greenhouse vegetable fields, the rational use of N fertilizer should be paid great attention to farmers in vegetable cultivation.  相似文献   

19.

Background and aims

Recent research has demonstrated the high accuracy of a new method for assessment of plant available P in soil called diffusive gradients in thin-films (DGT). The process of P released by additions of bicarbonate to soil samples simulating common soil P tests is yet to be assessed by the new method (DGT). The aim of this study was to identify the pools of soil P extracted by soil test methods (DGT, Colwell and resin) by comparing, in 32P–labelled soils, the specific activity (SA) of phosphorus extracted by common soil test extracts with the SA of wheat plants grown in a range of agricultural soils from southern Australia.

Methods

Wheat (cv. Frame) was grown for 4 weeks in 14 soils that were labelled uniformly with carrier-free 32P. The specific activity (SA) of P (MBq 32P kg 31P?1) in each soil test extract was compared to the SA of P in the wheat plants.

Results

The SA of P in plants were similar to P extracted by the Colwell extractant in only 4 of the 14 soils; while SA in plants and extractants corresponded in 10 of the soils for the resin method and in 12 of the soils for the DGT method. Phosphorus in the Colwell and resin extract solutions had significantly lower SAs compared to P in the plants for 10 and 4 of the soils, respectively, indicating greater extraction of non-labile P sources (unlabelled 31P). Phosphorus in the DGT extractant had significantly lower SA than the plants for 1 soil and in 1 soil the SA was higher. Overall, across all soils, 25 % of P extracted by the Colwell method was non labile compared to 9 % and 2 % for the resin and DGT methods, respectively.

Conclusion

The new DGT method for extraction of soil P has the potential to accurately predict occurrences of P deficiency because it generally extracts the same pool of labile soil P accessed by wheat plants, while methods using bicarbonate solution (e.g. Colwell, Olsen) or water (resin) at wide soil:solution ratios are more likely to measure more non-labile forms of P in soil.  相似文献   

20.
Judith Pump  Ralf Conrad 《Plant and Soil》2014,384(1-2):213-229

Aims

Rice fields are an important source for the greenhouse gas methane. Plants play an essential role in carbon supply for soil microbiota, but the influence of the microbial community on carbon cycling is not well understood.

Methods

Microcosms were prepared using sand-vermiculite amended with different soils and sediments, and planted with rice. The microcosms at different growth stages were pulse-labeled with 13CO2 followed by tracing 13C in plant, soil and atmospheric carbon pools and quantifying the abundance of methanogenic archaea in rhizosphere soil.

Results

Overall,?>85 % of the freshly assimilated carbon was allocated in aboveground plant biomass, approximately 10 % was translocated into the roots and?4, but emission of 13C-labeled CH4 started immediately and 13C enrichment revealed that plant-derived carbon was an important source for methanogenesis. The results further demonstrated that carbon assimilation and translocation processes, microbial abundance and gas emission were not only affected by the plant growth stage, but also by the content and type of soil in which the rice plants grew.

Conclusions

The study illustrates the close ties between plant physiology, soil properties and microbial communities for carbon turnover and ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号