首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of soil pH on damping-off of sugar beet by R. solani (AG2-2) and soil suppressiveness against the disease were studied by comparing disease incidences in pasteurized versus non-pasteurized, infested soils. Soil pH was correlated neither to disease incidence in five soils ranging from pH 4.5 to 7.2 nor to indigenous disease suppressiveness, the difference in disease incidences between non-treated soil and its pasteurized counterpart. When an alkaline soil was acidified with H2SO4, disease suppression markedly declined, increasing disease incidence in the non-pasteurized soil. Inversely, disease suppression was enhanced when an acidic soil was neutralized by adding Ca(OH)2. Soil amendment with dried peanut plant residue suppressed the disease in two pasteurized, near-neutral soils, lowering the incidence to the levels in the non-pasteurized soils, but was less effective in two pasteurized, acidic soils. In vitro mycelial growth of the pathogen and seedling growth was optimal at pH 4.5–5.5 and 6.0–6.5, respectively, and declined as the pH became higher or lower. (Conclusions) These results suggest that the seedlings were inhibited more than the pathogen at low pH, and that indigenous disease suppressiveness through the activity of antagonistic soil microorganisms operates effectively in near-alkaline soils, but is weakened or nullified in acidic soils.  相似文献   

2.
In naturally infested soil containingPythium ultimum, P. acanthicum andPhytophthora megasperma, onlyP. ultimum was associated with root rot and damped-off seedlings. Damping-off was promoted by low soil temperatures and by flooding. Seedling stands were markedly reduced when seed was pre-incubated in soil at 12°C but not at 25°C or 35°C. Dusting carrot seed with metalaxyl significantly increased seedling stands in the field at rates from 1.5–6 g kg−1 seed and in both flooded and unflooded, naturally infested soil at 3.15 g kg−1. In greenhouse experiments using artifically infested soil,P. ultimum andP. paroecandrum caused damping-off of carrot seedlings andRhizoctonia solani reduced root and shoot weights.R. solani caused damping-off in nutrient-enriched soil.P. acanthicum andP. megasperma were not pathogenic to seedlings, although both fungi colonized roots. Soil populations of allPythium spp., particularlyP. ultimum, increased during growth of seedlings and population growth ofP. megasperma was promoted by periodic flooding. Infestation of soil withP. acanthicum did not reduce damping-off of carrot seedlings byP. ultimum orP. paroecandrum, but significantly increased root and shoot weights and decreased root colonization byR. solani P. acanthicum has potential as a biocontrol agent againstR. solani.  相似文献   

3.
Three antifungal compounds, designated xanthobaccins A, B, and C, were isolated from the culture fluid of Stenotrophomonas sp. strain SB-K88, a rhizobacterium of sugar beet that suppresses damping-off disease. Production of xanthobaccin A in culture media was compared with the disease suppression activities of strain SB-K88 and less suppressive strains that were obtained by subculturing. Strain SB-K88 was applied to sugar beet seeds, and production of xanthobaccin A in the rhizosphere of seedlings was confirmed by using a test tube culture system under hydroponic culture conditions; 3 μg of xanthobaccin A was detected in the rhizosphere on a per-plant basis. Direct application of purified xanthobaccin A to seeds suppressed damping-off disease in soil naturally infested by Pythium spp. We suggest that xanthobaccin A produced by strain SB-K88 plays a key role in suppression of sugar beet damping-off disease.  相似文献   

4.
5.

Background and aims

Replant problems or soil sickness are known phenomena but still unsolved. The aims of this study were (i) to set up a test system for detecting replant problems using in vitro propagated apple rootstocks (M26) based on different soil disinfection treatments and (ii) to explore the treatment effects on root morphology and soil microbial community structure.

Methods

The bio-test involved soil with apple replant problems (apple sick) and healthy soil from an adjacent plot, both either untreated, or submitted to treatments of 50 and 100 °C, or the chemical soil disinfectant Basamid. Histological analyses of roots and denaturing gradient gel electrophoresis (DGGE) fingerprints in rhizosphere soil collected at the final evaluation were performed.

Results

After 10 weeks, shoot dry mass on apple sick soil was 79, 108 and 124 % higher for soil treated at 50 °C, 100 °C and with Basamid, respectively, compared to the untreated soil. Roots in untreated apple sick soil showed destroyed epidermal and cortical layers. DGGE fingerprints revealed treatment dependent differences in community composition and relative abundance of total bacteria, Bacillus, Pseudomonas and total fungi.

Conclusions

The clear differences detected in soil microbial communities are the first steps towards a better understanding of the causes for apple replant problems.  相似文献   

6.

Aims

Integrating multiple soil and disease management practices may improve crop productivity and disease control, but potential interactions and limitations need to be determined.

Methods

Three different potential disease-suppressive management practices, including a Brassica napus (rapeseed) green manure rotation crop, conifer-based compost amendment, and three biological control organisms (Trichoderma virens, Bacillus subtilis, and Rhizoctonia solani hypovirulent isolate Rhs1A1) were evaluated alone and in combination at sites with both organic and conventional management histories for their effects on soilborne diseases and tuber yield.

Results

Rapeseed rotation reduced all observed soilborne diseases (stem canker, black scurf, common scab, and silver scurf) by 10 to 52 % in at least one year at both sites. Compost amendment had variable effects on tuber diseases, but consistently increased yield (by 9 to 15 %) at both sites. Biocontrol effects on disease varied, though Rhs1A1 decreased black scurf at the conventional site and T. virens reduced multiple diseases at the organic site in at least one year. Combining rapeseed rotation with compost amendment both reduced disease and increased yield, whereas biocontrol additions produced only marginal additive effects.

Conclusions

Use of these treatments alone, and in combination, can be effective at reducing disease and increasing yield under both conventional and organic production practices.  相似文献   

7.
Rhizoctonia solani is a damping-off pathogen that causes significant crop loss worldwide. In this study, the potential of Muscodor cinnamomi, a new species of endophytic fungus for controlling R. solani AG-2 damping-off disease of plant seedlings by biological fumigation was investigated. In vitro tests showed that M. cinnamomi volatile compounds inhibited mycelial growth of pathogens. Among nine solid media tested, rye grain was the best grain for inoculum production. An in vivo experiment of four seedlings, bird pepper, bush bean, garden pea and tomato were conducted. The results indicated that treatment with 30?g of M. cinnamomi inoculum was the minimum dose that caused complete control of damping-off symptoms of all seedlings after one month of planting. The R. solani-infested soil showed the lowest percentage of seed germination. In addition, M. cinnamomi did not cause any disease symptoms. From the results it is clear that M. cinnamomi is effective in controlling R. solani AG-2 both in vitro and in vivo.  相似文献   

8.

Aims

Our objective was to evaluate if natural recovery may be exploited in disease control of Verticillium wilt in olive. Therefore, we evaluated the following: the incidence of natural recovery; the Verticillium dahliae viability within olive tissues over time and the effectiveness of soil solarization, calcium cyanamide and pollarding of trees at soil level in promoting natural recovery.

Methods

Three different experiments (A, B and C) were performed in commercial olive orchards planted with the highly susceptible cv. ‘Bella di Cerignola’ and infested with the non-defoliating V. dahliae pathotype.

Results

In experiment A, in the period 2010–2012, natural recovery occurred on 35 of 138 diseased trees (25 %); however, this recovery was transient and lasted between 3 months for 11 trees (8 %) and 21 months for one tree (0.7 %). V. dahliae tended to be inactivated in twigs within 1 or 2 years after symptom onset (experiment A). However, it was evident that V. dahliae was more abundant in larger (trunk and first- or second-order branches) versus thinner woody parts of olive trees (roots; experiment B). In the attempt to explore whether natural recovery could be further stimulated artificially, it was observed that soil solarization and soil application of calcium cyanamide were ineffective in promoting its occurrence. Tree pollarding at soil level induced a transient recovery, which lasted only 1 year (experiment C).

Conclusions

Based on our observations, natural recovery of susceptible olive from Verticillium wilt has a low impact on the disease epidemiology in the short-term only and cannot be effectively stimulated in practice by soil solarization, calcium cyanamide or tree pollarding.  相似文献   

9.
Cucumber damping-off disease mainly caused by Rhizoctonia solani leads to serious loss in agricultural production. In this study, the effective and environmentally friendly methods, using two biological agents combined with applying organic matter or reductive soil disinfestation (RSD), were performed to control the disease. Real-time PCR and MiSeq pyrosequencing were used to investigate the microbial community changes during the biocontrol process. The results showed that the applications of organic matter and antagonists (Ant) significantly decreased R. solani population and disease incidence, and increased soil microbial population and activity. However, antagonists application combined with RSD (RSD + Ant) behaved much better in nearly all aspects, and facilitated to maintain the population and activity of antagonists. Compared to the applications of organic matter and antagonists, the combination of RSD and antagonists changed soil microbial community structure to a larger extent. In conclusion, the applications of biocontrol agents and organic matter improved soil microbial community and decreased cucumber damping-off disease incidence, but the combination of RSD and the antagonists was a more promising method for the improvement of soil microbial community and the stable and successful control of the disease.  相似文献   

10.

Background and Aims

Crop residues are important for the redistribution of alkalinity within soils. A net increase in pH following residue addition to soil is typically reported. However, effects are inconsistent in the field due to confounding soil processes and agronomic practises.

Methods

A column experiment investigated the effects of canola, chickpea and wheat residues, differing in alkalinity content and C:N ratio, on soil pH changes in a Podosol (Podzol; initial pH 4.5) and Tenosol (Cambisol; initial pH 6.2) under field conditions.

Results

Residues (10 g dry matter kg-1 soil; 0–10 cm) increased soil pH, and temporal changes in alkalinity depended on the residue and soil type. Alkalinity was generated via abiotic association reactions between H+ and added organic matter and via ammonification and decarboxylation processes during decomposition. Alkalinity from canola and chickpea residues moved down the soil profile (10–30 cm) and was attributed to nitrate immobilisation and organic anion decomposition by soil microbes.

Conclusions

The application of residues to acid and moderately acid soils increased the pH of both topsoil and subsoils, which persisted over 26 months. Maximal increase of pH observed at 3 months was correlated with the concentration of excess cations in the residues.  相似文献   

11.

Background and aims

As low initial uptake and essentially zero later uptake limit efficacy of N fertilization for temperate conifers, we investigated factors limiting long-term tree uptake of residual 15?N-labeled fertilizer.

Methods

We used a pot bioassay to assess availability of 15?N from soil sampled 10 years after fertilization of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand with 15?N-urea (200 kg N ha?1). Douglas-fir seedlings were grown for 2 years in organic (designated LFH) and mineral soil (0–10 cm) layers reconstructed from control and fertilized plots; residual fertilizer N amounted to 10 % of LHF and 5 % of MIN N.

Results

Percentage recovery of residual 15?N in seedlings was not affected by the original season of fertilization (spring vs. fall), but differed by the source of 15?N excess. LFH was a better source of residual 15?N; 12.4 % of residual LFH 15?N was taken up by seedlings and 7.6 % transferred to soil, whereas mineral soil yielded only 8.3 % of residual 15?N to seedling uptake and 2.4 % to LFH. Extractable inorganic N was 2–3 orders of magnitude higher in fallow pots.

Conclusions

Ten-year residual fertilizer 15?N was clearly cycling between LFH and mineral soil and available to seedlings, indicating that other factors such as denitrification, leaching, and asynchrony of soil N mineralization and tree uptake limit long-term residual N fertilizer uptake in the field.  相似文献   

12.

Key message

Carbohydrate differences in offspring as a consequence of maternal effects explain transgenerational tree-pathogen interactions.

Abstract

The expression of disease is increasingly recognised as being influenced by maternal effects, given that environmental conditions experienced by mother trees affect tolerance in offspring. It is hypothesised that plant carbohydrates could mediate transgenerational tree-pathogen interactions. The carbohydrate content of Pinus pinaster seedlings obtained from two contrasting maternal environments was studied and seedlings from the two environments were challenged with Fusarium circinatum. The representative mid-infrared spectra of samples in the range of the carbohydrates diagnosed higher proportion of methylesterified pectic polysaccharides and lower proportion of nonesterified pectic polysaccharides for inoculated than for control seedlings. Total carbohydrate content of seedlings from the unfavourable environment did not differ much from total carbohydrate content of seedlings from the favourable maternal environment. However, glucose was 13 % higher and uronic acids 11 % lower in seedlings from the favourable environment after inoculation in comparison to seedlings from the unfavourable maternal environment which had their carbohydrate contents unaltered after inoculation. It is concluded that plant carbohydrates mediate transgenerational tree-pathogen interactions.  相似文献   

13.

Aims

Tropical plantations are likely to supply a growing share of the increasing world demand for forest products. We aimed to gain insight into the role of the nitrogen (N) contained in harvest residues (HR) for tree growth and soil N stocks.

Methods

We used 15N-labeled harvest residues to (1) study the dynamic of N release throughout decomposition, (2) determine the vertical transport pathways of N from the forest floor to the upper soil layers, and (3) quantifying the contributions of HR to soil N stocks and the supply of N to young Eucalyptus trees.

Results

Almost all of the 15N initially contained in the HR was recovered 27 months after deposition, with 21 % remaining in HR, 38 % being transferred to the underlying O layer, 21 % being transferred to the 0–15 cm soil layer, and approximately 15 % accumulating in the tree biomass. Our results supported the presence of two pathways of N transfers from the O layer to the mineral soil: (1) the leaching of dissolved 15N from fresh litter during the first year after planting which actively contributed to Eucalyptus N nutrition and (2) the transport of particulate organic matter in percolating water which contributed to maintain N stocks in the first 15 cm of the soil. Approximately 40 % of the N content in 2-year-old Eucalyptus trees was derived from the labeled HR.

Conclusions

The sustainability of fast-growing Eucalyptus trees established on N-poor sandy tropical soils largely relies on organic residues, as an early source of mineral N for tree and as a source of organic N in the top soil.  相似文献   

14.
Bacillus subtilis RB14-CS, which suppresses the growth of various plant pathogens in vitro by producing the lipopeptide antibiotic iturin A, was cultured using soybean curd residue, okara, a by-product of tofu manufacture in solid-state fermentation. After 4 days incubation, iturin A production reached 3,300 mg/kg wet solid material (14 g/kg dry solid material), which is approximately tenfold higher than that in submerged fermentation. When the okara product cultured with RB14-CS was introduced into soil infested with Rhizoctonia solani, which is a causal agent of damping-off of tomato, the disease occurrence was significantly suppressed. After 14 days, the number of RB14-CS cells remained in soil at the initial level, whereas almost no iturin A was detected in soil. As the okara cultured with RB14-CS exhibited functions of both plant disease suppression and nutritional effect on tomato seedlings, this product is expected to contribute to the recycling of the soybean curd residue.  相似文献   

15.

Key message

Growth temperature had little effect on the response of net photosynthesis to high temperatures (up to 47 °C). On the other hand, elevated [CO 2 ] increased net photosynthesis at high temperatures.

Abstract

We investigated whether Pinus taeda seedlings grown under elevated CO2-concentration ([CO2]) and temperature would be able to maintain positive net photosynthesis (A net) longer than seedlings grown under ambient conditions when exposed to temperatures up to 47 °C. Additionally, we investigated whether a locally applied temperature increase would yield the same short-term gas exchange response to temperatures up to 47 °C as a naturally occurring latitudinal temperature increase of equal magnitude. Growth conditions were applied for 7 months (February to August) in treatment chambers constructed at two sites in the native range of P. taeda in the southern US. The sites were located 300 km apart along a north–south axis with a natural temperature difference of 2.1 °C. Seedlings were grown under ambient temperature and [CO2] conditions at both sites. At the northern site, we also applied a temperature increase of 2 °C (T E), ensuring that this treatment equalled the mean temperature at the southern site. Additionally, at the northern site, we applied a treatment of elevated [CO2] (C E). Gas exchange was measured on all plants in walk-in environmentally controlled chambers. Under C E, there was no difference in A net of seedlings grown in ambient or ambient +2 °C temperatures at any measurement temperature, while differences were present under ambient [CO2]. Furthermore, A net was higher under C E than under ambient [CO2]. At 47 °C, A net was negative in all seedlings except those in the C E and ambient temperature treatment combination. Seedlings at the northern site in the T E treatment showed no significant differences in A net compared with seedlings grown at ambient temperature at the southern site, indicating that the plants responded equally to a manipulated temperature increase and a latitudinal increase in temperature. Our results suggest that elevated [CO2] increases photosynthetic thermotolerance at high temperature (>41 °C), but this effect diminishes as temperature increases further. Temperature manipulations could provide accurate information on the effect of latitudinal differences in temperature on leaf gas exchange of P. taeda.  相似文献   

16.

Background and aims

Natural abundance of the stable nitrogen (N) isotope 15N can elucidate shifts in plant N acquisition and ecosystem N cycling following disturbance events. This study examined the potential relationship between foliar δ15N and depth of plant N acquisition (surface organic vs. mineral soil) and nitrification as conifer stands develop following stand-replacing wildfire.

Methods

We measured foliar δ15N along an 18-site chronosequence of jack pine (Pinus banksiana) stands, 1 to 72 years in age post-wildfire. Foliar δ15N was compared to total δ15N of the organic (Oe + Oa) and mineral (0–15 cm) soil horizons, and organic horizon N mineralization and nitrification as functions of total mineralization.

Results

Foliar δ15N declined with stand age, yet wildfire effects were heterogeneous. Jack pine seedlings on burned, mineral soil patches in the youngest stand were significantly more enriched than those on unburned, organic patches (P?=?0.007). High foliar values in the youngest stands relative to mineral-horizon δ15N indicate that nitrification also likely contributed to seedling enrichment.

Conclusions

Our results suggest jack pine seedlings on burned patches obtain N from the mineral soil with potentially high nitrification rates, whereas seedlings on unburned patches and increasingly N-limited, mature jack pine acquire relatively more N from organic horizons.  相似文献   

17.

Aims

We examined the importance of partial seed consumption (cotyledon loss) by rabbits in the early establishment of seedlings of cork oaks restricted to nutrient-impoverished soils.

Methods

To determine the importance of cotyledons in the growth and development of seedlings, we simulated two levels of predation [light (30 % cotyledon loss) and heavy (60 % loss) partial consumption] and two soil nutrient contents (nutrient-poor soil, nutrient-rich soil). Seedlings height, root length, dry root and shoot biomass, specific leaf mass, leaf density, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations were determined.

Results

Results indicated that effect of nutrient level on the growth of the oak seedlings was more important than that of cotyledon biomass. However, in nutrient–poor soils, cotyledon biomass played a major role in the early performance of cork oaks. Acorns grown in nutrient-rich substrate, despite having greater aerial vigor, were slower to develop a vertical root, and hence less likely to reach permanent moisture. Cotyledon loss caused a decrease in the biomass of roots and shoots when acorns were heavily consumed, and as a result experienced a reduction in net photosynthetic rate, stomatal conductance and chlorophyll concentration. Survival of seedlings was unaffected by either soil type or cotyledon loss.

Conclusions

Our results show that effects of soil type on the survival of oak seedlings were more important than those of cotyledon biomass. However, in a competitive situation, cotyledon biomass, as an indicative of growth nutrient support rather than an energy source, could be vital in a nutrient-poor environment, particularly in Mediterranean climate regions and for species with little inherent drought tolerance (as is the case of Quercus spp.), where rapid root growth is required to ensure that contact with soil moisture is maintained over the first summer.  相似文献   

18.

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.  相似文献   

19.
This research demonstrates the role of antimicrobial volatiles produced by Muscodor albus in disease control in soil and potting mix. The volatiles controlled damping-off of broccoli seedlings when pots containing soil or soilless potting mix infested with Rhizoctonia solani were placed in the presence of active M. albus culture without physical contact in closed containers. Conversely, plugs of R. solani on potato dextrose agar were inhibited when they were placed in the presence of M. albus incorporated into garden soil or soilless potting mix. Gas chromatographic analysis with solid-phase micro extraction showed that isobutyric acid and 2-methyl-1-butanol were released from the treated substrates. There was a significant relationship between the production of isobutyric acid in soil and damping-off control (P = 0.0415). Production of isobutyric acid was short-lived in treated substrates, peaking at 24 h in potting mix and 48 h in soil. Amounts of isobutyric acid released from soil were several times higher than those released from potting mix. Also, higher rates of M. albus rye grain culture were required to control damping-off in potting mix than in soil. This suggests that the soil used in this study is a better environment than soilless potting mix for the biological activity or viability of M. albus and components from the potting mix might bind the volatiles. The release of volatiles from soil during the biofumigation process suggests that containment measures such as tarping could be used to improve the control of soil-borne diseases and reduce use rate of the biocontrol agent.  相似文献   

20.

Key message

Elevated CO 2 enhances the photosynthesis and growth of hybrid larch F 1 seedlings. However, elevated CO 2 -induced change of tree shape may have risk to the other environmental stresses.

Abstract

The hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) is one of the most promising species for timber production as well as absorption of atmospheric CO2. To assess the ability of this species in the future high CO2 environment, we investigated the growth and photosynthetic response of hybrid larch F1 seedlings to elevated CO2 concentration. Three-year-old seedlings of hybrid larch F1 were grown on fertile brown forest soil or infertile volcanic ash soil, and exposed to 500 μmol mol?1 CO2 in a free-air CO2 enrichment system located in northern Japan for two growing seasons. Regardless of soil type, the exposure to elevated CO2 did not affect photosynthetic traits in the first and second growing seasons; a higher net photosynthetic rate was maintained under elevated CO2. Growth of the seedlings under elevated CO2 was greater than that under ambient CO2. We found that elevated CO2 induced a change in the shape of seedlings: small roots, slender-shaped stems and long-shoots. These results suggest that elevated CO2 stimulates the growth of hybrid larch F1, although the change in tree shape may increase the risk of other stresses, such as strong winds, heavy snow, and nutrient deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号