首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental–modelling approach based on winter wheat infected by Puccinia triticina.

Methods

One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source–sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling.

Key Results

Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd−1 per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the duration of grain filling.

Conclusions

Source–sink modelling holds the promise of accounting for plant–pathogen interactions over time under fluctuating climatic/lighting conditions in a robust way.  相似文献   

2.
3.
4.
5.
6.
Reproduction is an energetically costly behavior for many organisms, including species with mating systems in which males call to attract females. In these species, calling males can often attract more females by displaying more often, with higher intensity, or at certain frequencies. Male frogs attract females almost exclusively by calling, and we know little about how pathogens, including the globally devastating fungus, Batrachochytrium dendrobatidis, influence calling effort and call traits. A previous study demonstrated that the nightly probability of calling by male treefrogs, Litoria rheocola, is elevated when they are in good body condition and are infected by B. dendrobatidis. This suggests that infections may cause males to increase their present investment in mate attraction to compensate for potential decreases in future reproduction. However, if infection by B. dendrobatidis decreases the attractiveness of their calls, infected males might experience decreased reproductive success despite increases in calling effort. We examined whether calls emitted by L. rheocola infected by B. dendrobatidis differed from those of uninfected individuals in duration, pulse rate, dominant frequency, call rate, or intercall interval, the attributes commonly linked to mate choice. We found no effects of fungal infection status or infection intensity on any call attribute. Our results indicate that infected males produce calls similar in all the qualities we measured to those of uninfected males. It is therefore likely that the calls of infected and uninfected males should be equally attractive to females. The increased nightly probability of calling previously demonstrated for infected males in good condition may therefore lead to greater reproductive success than that of uninfected males. This could reduce the effectiveness of natural selection for resistance to infection, but could increase the effectiveness of selection for infection tolerance, the ability to limit the harm caused by infection, such as reductions in body condition.  相似文献   

7.
The heterokaryotic and vegetative diploid phases of Colletotrichum lindemuthianum are described using nutritional and biochemical markers. Nitrate non-utilizing mutants (nit), derived from R2047, R89, R73, R65, and R23 isolates, were paired in all possible combinations to obtain heterokaryons. Although pairings R2047/R89, R2047/R73, R65/R73, and R73/R23 showed complete vegetative incompatibility, prototrophic heterokaryons were obtained from pairings R2047/R65, R2047/R23, R65/R89, R65/R23, R73/R89, R89/R23, R2047/R2047, R65/R65, R89/R89, R73/R73, and R23/R23. Heterokaryons gave rise to spontaneous mitotic segregants which carried markers corresponding to one or the other of the parental strains. Heterokaryons spontaneously produced prototrophic fast-growing sectors too, characterized as diploid segregants. Diploids would be expected to yield auxotrophic segregants following haploidization in basal medium or in the presence of benomyl. Parental haploid segregants were in fact recovered from diploid colonies growing in basal medium and basal medium containing the haploidizing agent. Although barriers to the formation of heterokaryons in some crosses were detected, the results demonstrate the occurrence of parasexuality among vegetative compatible mutants of C. lindemuthianum.  相似文献   

8.
9.
10.
The adaptive significance of red coloration in tropical forest leaves remains unclear. In vivo assays show that there is a significant negative correlation between anthocyanin pigments in young leaves and fungal pathogen damage. This supports a previous hypothesis that anthocyanins may protect young leaves from fungal damage during the vulnerable period of leaf expansion.  相似文献   

11.
12.
Various microorganisms produce the disaccharide trehalose during their symbiotic and pathogenic interactions with plants. Trehalose has strong effects on plant metabolism and growth; therefore, we became interested to study its possible role in the interaction of Arabidopsis thaliana with Plasmodiophora brassicae, the causal agent of clubroot disease. We found that trehalose accumulated strongly in the infected organs (i.e., the roots and hypocotyls) and, to a lesser extent, in the leaves and stems of infected plants. This accumulation pattern of trehalose correlated with the expression of a putative trehalose-6-phosphate synthase (EC 2.4.1.15) gene from P. brassicae, PbTPS1. Clubroot formation also resulted in an induction of the Arabidopsis trehalase gene, ATTRE1, and in a concomitant increase in trehalase (EC 3.2.1.28) activity in the roots and hypocotyls, but not in the leaves and stems of infected plants. Thus, induction of ATTRE1 expression was probably responsible for the increased trehalase activity. Trehalase activity increased before trehalose accumulated; therefore, it is unlikely that trehalase was induced by its substrate. The induction of trehalase may be part of the plant's defense response and may prevent excess accumulation of trehalose in the plant cells, where it could interfere with the regulation of carbon metabolism.  相似文献   

13.
Fungal infections have become important causes of morbidity and mortality in immunocompromised hosts, including those with the acquired immune deficiency syndrome (AIDS). Although significant therapeutic advances are being made in the field of antiretroviral therapy, parallel advances must be attained in the management of secondary infections, including those due to fungi. As increasing numbers of people with HIV infection come in to medical attention, the problem of fungal infections will also increase, requiring innovative approaches toward understanding the pathogenesis of these infections and developing new diagnostic and therapeutic modalities. A better understanding is required for the immunopathogenesis of fungal infections. Improved understanding of new and established antifungal agents in conjunction with ART agents as well as immune modulators, should yield important advances in prevention, control and treatment of fungal infections of HIV infected people.  相似文献   

14.

Background  

Reverse engineering of gene regulatory networks can be used to predict regulatory interactions of an organism faced with environmental changes, but can prove problematic, especially when focusing on complicated multi-factorial processes. Candida albicans is a major human fungal pathogen. During the infection process, this fungus is able to adapt to conditions of very low iron availability. Such adaptation is an important virulence attribute of virtually all pathogenic microbes. Understanding the regulation of iron acquisition genes will extend our knowledge of the complex regulatory changes during the infection process and might identify new potential drug targets. Thus, there is a need for efficient modelling approaches predicting key regulatory events of iron acquisition genes during the infection process.  相似文献   

15.
? Premise of the study: Large-scale population genetics studies are required to investigate the dispersal processes underlying the emergence of Mycosphaerella fijiensis, a fungal pathogen of banana. To this end, we have developed an optimized genotyping procedure combining novel microsatellite markers and a modified DNA extraction protocol. ? Methods and Results: Primers for tetranucleotide loci were designed directly from the recently published genome sequence of M. fijiensis. A total of 19 new polymorphic and easy-to-score markers were developed. Their use was combined with an adapted protocol for total DNA extraction starting from young lesions collected from banana leaves, thus avoiding a pathogen isolation step. ? Conclusions: The combination of the two technical developments presented here will permit the expansion of genotyping capacity in M. fijiensis, allowing large-scale analysis of samples from various geographic locations.  相似文献   

16.
Chen Q  Samaranayake LP 《Microbios》2000,102(401):45-52
Subclinical Candida infection has been suggested as one of the aetiological factors in patients with burning mouth syndrome (BMS). In order to investigate the possible factors which contribute to the relatively high isolation rate of Candida in BMS, parotid saliva samples (20 in toto) from patients with this condition were collected and the growth of Candida in each sample dynamically observed using a computerized turbidometric assay system. A total of thirteen parotid saliva samples obtained from healthy individuals served as normal controls. The results showed no significant growth differential within the test and control saliva samples, when a single isolate each of Candida albicans and Candida tropicalis were cultured for 24 h, at 37 degrees C. A single isolate of Candida glabrata tended to grow better in the saliva from BMS patients than the controls. These results indicate that the composition of saliva may be a contributory factor for the high isolation rate of Candida in saliva of BMS patients.  相似文献   

17.
Root anatomical phenotypes vary among maize (Zea mays) cultivars and may have adaptive value by modifying the metabolic cost of soil exploration. However, the microbial trade‐offs of these phenotypes are unknown. We hypothesized that nodal roots of maize with contrasting cortical anatomy have different patterns of mutualistic and pathogenic fungal colonization. Arbuscular mycorrhizal colonization in the field and mesocosms, root rots in the field, and Fusarium verticillioides colonization in mesocosms were evaluated in maize genotypes with contrasting root cortical anatomy. Increased aerenchyma and decreased living cortical area were associated with decreased mycorrhizal colonization in mesocosm and field experiments with inbred genotypes. In contrast, mycorrhizal colonization of hybrids increased with larger aerenchyma lacunae; this increase coincided with larger root diameters of hybrid roots. F. verticillioides colonization was inversely correlated with living cortical area in mesocosm‐grown inbreds, and no relation was found between root rots and living cortical area or aerenchyma in field‐grown hybrids. Root rots were positively correlated with cortical cell file number and inversely correlated with cortical cell size. Mycorrhizae and root rots were inversely correlated in field‐grown hybrids. We conclude that root anatomy is associated with differential effects on pathogens and mycorrhizal colonization of nodal roots in maize.  相似文献   

18.
Silver nanoparticles (Ag-NPs) are known to have inhibitory and fungicidal effects. Resistance against fungal infection has emerged as a major health problem in recent years, which needs great and immediate concern. Here, we report the extracellular biological synthesis of silver nanoparticles through a simple green route approach using a marine mangrove (Rhizophora mucronata) and silver nitrate. Aqueous extract of marine mangrove helped in reduction and was used as capping agent in biological synthesis. Nanoparticles were characterized using microscopy and spectroscopy techniques such as HRTEM, UV–Vis absorption spectroscopy and FTIR spectroscopy. X-ray diffraction analysis showed that the nanoparticles had face centered cubic structure with crystalline nature. FTIR spectroscopy showed the presence of different functional groups, such as hydroxyl and carbonyl, involved in the synthesis of nanoparticles. The antifungal activity of fluconazole and itraconazole was enhanced against the tested pathogenic fungi in the presence of Ag-NP and confirmed from increase in fold area of inhibition. This environmentally friendly method of biological synthesis can be easily integrated for various medical applications.  相似文献   

19.
Armillaria ostoyae, the causal agent of root- and butt-rot in several forest trees, has a lifecycle consisting of alternating parasitic and saprotrophic stages. It causes high levels of mortality in the intensively managed monospecific plantations of maritime pine (Pinus pinaster) in south-western France (Landes forest). In this region, the pathogen was native to the forests, pre-dating the large plantations of the 19th century. The first objective of this study was to estimate the variation in aggressiveness on maritime pine, determined as rate of host mortality caused by the infection process. The second objective was to characterize relationships between aggressiveness and traits likely to be involved in parasitism (i.e. rhizomorph production and colonization of host tissues) and saprotrophism (ability to decompose wood). The A. ostoyae isolates studied caused high rates of mortality in maritime pine, with significant differences between isolates. However, there was no variation of aggressiveness between A. ostoyae isolates from ancient forested and from more recently afforested areas, and did not support the hypothesis of a higher aggressiveness linked to a recent range expansion and the intensification of silviculture in this area. Rhizomorph production and aggressiveness were significantly correlated. In addition, we did not detect any trade-off between components of parasitism and saprotrophism, suggesting no significant evolutionary constraint driving these traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号