首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Silicified wood collected from the Lower Miocene Nawamata Formation at two localities, Nakaya and Nigoriike, Monzen-machi, Noto Peninsula, central Japan, were identified. Among the 58 specimens there are two species of conifers and eleven species of dicotyledons:Taxodioxylon cunninghamioides (Watari) Watari andT. sequoianum (Merckl.) Gothan (both Taxodiaceae),Carya protojaponica Watari (Juglandaceae),Pterocarya rhoifolia Siebold et Zucc. (Juglandaceae),Ostrya monzenensis sp. nov. (Betulaceae),Quercus anataiensis (Watari) Watari (Fagaceae),Liquidambar hisauchii comb. nov. (Hamamelidaceae),Prunus iwatense (Watari) Takahashi et Suzuki (Rosaceae),Gleditsia paleojaponica comb. nov. (Leguminosae),Acer watarianum Takahashi et Suzuki (Aceraceae),Meliosma mio-oldhami sp. nov. (Sabiaceae),Reevesia miocenica Watari (Sterculiaceae), andFraxinus notoensis sp. nov. (Oleaceae). The fossil wood floras at the two localities are compared to the Daijima Flora, and warm-and/or cool-temperate mesic forests are suggested to occur in the Early Miocene of Monzen.  相似文献   

2.
Three canopy tree species (Fraxinus platypoda, Pterocarya rhoifolia, andCercidiphyllum japonicum) coexist in riparian forests in the Chichibu Mountains of central Japan. We compared the forest structure and the reproductive characteristics of these species.F. platypoda was the dominant canopy species. It produced many saplings and grew in abandoned channels and floodplains, and was able to invade both large and small disturbance sites.P. rhoifolia was a subdominant species that occurred on the deposits of large-scale landslides and grew in patches containing even-aged trees.C. japonicum was the other subdominant species that produced few saplings and invaded large disturbance sites together withP. rhoifolia. Establishment sites ofC. japonicum were restricted to fine mineral soils and fallen logs. We found tradeoffs in reproductive characteristics (seed size, seed number, irregular seed production, and sprouting) among the three canopy species.F. platypoda andP. rhoifolia had large seeds and produced fruits irregularly.C. japonicum produced many small seeds every year and sprouted prolifically around the main stem. The causes of the coexistence mechanism of the three riparian canopy tree species may be both niche- and chance-determined to varying degrees. In riparian areas, the three canopy species were well-adapted to disturbances throughout their life-history.  相似文献   

3.
To clarify the habitat requirements of the near-threatened butterfly, Sasakia charonda (Lepidoptera, Nymphalidae), we studied the distribution pattern of its host trees, Celtis sinensis and Celtis jessoensis, and the utilization patterns of various vegetation types by this butterfly in the Oofukasawa River basin in Hokuto City, Yamanashi Prefecture, central Japan. Two species of host trees, C. sinensis and C. jessoensis (height = 2 m or more) were found in riparian forests on sandbanks (hereinafter, riparian forest), in forest regenerated after landslides on valley walls (landslide tracks), in secondary deciduous forests consisting mainly of Quercus acutissima or Quercus serrata and in forests established at abandoned paddy fields and their periphery, where weeds and shrubs used to be mown frequently to avoid shade on the paddies before their abandonment. This suggests that they are pioneer species, and their distribution and regeneration depend on natural and/or human disturbances. Host trees above 2 m were preferred by larvae, and there were very few such trees in secondary forests. More overwintering larvae occurred in riparian forests than at other sites. The number of S. charonda adults was highest at the edge of riparian forests, and we observed a variety of behaviors such as puddling, chasing and mating there. Although the number of adult butterflies was smaller inside and at the edge of secondary forests than in riparian forests, puddling by males and roosting on the trunk of Q. acutissima or Q. serrata by females were observed more frequently there than in riparian forests. Thus, we conclude that landscapes including both riparian forests with natural disturbance and secondary forests with Quercus trees are necessary to maintain host Celtis trees and S. charonda populations.  相似文献   

4.
Sack  Lawren  Grubb  Peter J.  Marañón  Teodoro 《Plant Ecology》2003,168(1):139-163
It has been hypothesized that plants cannot tolerate combined shade and drought, as a result of morphological trade-offs. However, numerous plant species are reportedly widespread in shaded forest understories that face drought, whether seasonal or occasional. We studied juveniles of six plant species that cope with strong summer drought in the understoreys of mixed Quercus forests in southern Spain: the tall-shrubs Phillyrea latifolia and Viburnum tinus, the perennial herb Rubia peregrina, the small shrub Ruscus aculeatus, and climbers Hedera helix and Smilax aspera. All of these species persist in evergreen shade (c. 3% daylight). Two other species were studied as comparators, Ruscus hypoglossum, less tolerant of drought, and Ceratonia siliqua, less tolerant of shade. Morphological and chemical variables relevant to shade and drought tolerance were measured for juveniles in a range of sizes, and also for the leaves of mature plants. The species converge in features that confer tolerance of shade plus drought by reducing demand for resources. Demand for water is reduced through a moderate to high below-ground mass fraction and low to moderate specific leaf area (respectively 0.22–0.52 and 112–172 cm2 g–1 at 1.00 g total dry mass). Demand for both irradiance and water is reduced through a low to moderate foliar nitrogen concentration and long-lived, physically protected leaves (2 yr). The species also converge in features that confer tolerance of either low irradiance or drought through specialized capture of resource, without precluding the other tolerance. These features include deep roots relative to shoot size, moderately higher specific leaf area in shade (1.2–2.0 × that in sun) and higher chlorophyll:nitrogen ratio in shade. Foliar chlorophyll per unit mass was higher in shade, but chlorophyll was not necessarily synthesized in greater amounts; rather, it was higher apparently due to shade effects on structural features linked with specific leaf area. In contrast, N per unit mass was higher in sun leaves independently of specific leaf area. Despite these convergences, the species diverge considerably in their root mass allocation and architecture, leaf saturated water content, density of stomata and guard cell size. No single narrowly defined functional type is needed for tolerance of shade plus drought.  相似文献   

5.
Forest restoration efforts should aim at creating landscapes with a balanced array of forest stands at varying successional stages, thus providing habitat for a wealth of species and multiple ecosystem services. In most high‐mountain ecosystems of South America, long‐term livestock rearing activities that include fires, browsing, and trampling have delayed or stopped forest succession resulting in simplified landscapes. To determine appropriate restoration goals for Polylepis australis mountain forests of Central Argentina, we established 146 plots of 900 m2 plots throughout five river basins with different historic livestock stocking rates. In each plot, we measured tree heights, canopy cover, estimated age of oldest tree, volume of standing and fallen dead wood, fern cover, and abundance of shade tolerant Maytenus boaria trees. K‐means cluster analysis using tree heights and canopy cover as classificatory variables yielded four biologically meaningful clusters. Clusters 1, 2, 3, and 4 comprising 68, 10, 13, and 9% of the plots, respectively, showed increasing amounts of standing and fallen dead wood, fern cover, and abundance of shade tolerant M. boaria trees. Plots in clusters 1 and 2 were proportionally more abundant in basins with high human impact and at the altitudinal extremes of P. australis distribution, whereas plots in clusters 3 and 4 were relatively more abundant in well‐preserved basins and at the optimum of their altitudinal distribution. We interpret clusters 1, 2, 3, and 4 as degraded, regenerating, young, and mature forests, respectively. Restoration goals should focus on attaining an even distribution of forest types similar to that found in our best‐preserved basins.  相似文献   

6.
Size and age structure, spatial analysis, and disturbance history were used to analyse the population structures and regeneration patterns of 8 conifer stands in the central western Cascade Range, Oregon, USA. Variation in forest structure reflected the effects of frequent (20–50 yr) low-intensity fires and treefalls, infrequent (100–200 yr) localised, intense fires, and extensive fires that resulted in stand replacement (every ca 400 yr?).The amount of canopy removed and the size of openings formed by fires and treefalls were important determinants of subsequent forest establishment. Single or several species stands of Pseudotsuga and/or Abies procera, or mixed species stands of Pseudotsuga, Abies procera, Tsuga heterophylla and Abies amabilis established in openings where intense fires had removed most of the canopy trees over several ha. Multi-tiered and multi-aged stands, often containing 400–500 yr-old Pseudotsuga and variously-sized more or less even-aged patches of younger shade tolerant Tsuga heterophylla and/or Abies amabilis, occurred where lower-intensity fires did not kill all overstorey trees or where treefalls occurred after the initial fire.Current regeneration processes are influenced by overstorey composition, the availability and size of canopy openings, and the availability of substrates suitable for regeneration. Tsuga heterophylla and Abies amabilis established under Pseudotsuga menziesii and Abies procera canopies and in small canopy openings (<400 m2) created by windfalls, but rarely under Tsuga. Down logs and stumps were favoured establishment sites for Tsuga.The disturbance regime of fires of low-to moderate-intensity, windfalls, and occasional fires that result in extensive stand replacement contrasts with the pattern of infrequent, catastrophic disturbances proposed for other areas of the Pacific Northwest. Although fires at stand establishment commonly determine much of the composition, structure, and subsequent stand development, canopy replacement by shade tolerant species occurs as the different life histories of the species are expressed in response to various disturbances differing in intensity and frequency. Such a non-equilibrium view of vegetation change is consistent with many other fire-dominated forests of the western United States.  相似文献   

7.
Analyses of the spatial distribution pattern, spatial genetic structure and genetic diversity were carried out using a 33-ha plot in a hill dipterocarp forest for three dipterocarps with different habitat preferences, i.e. Shorea curtisii on the ridges, Shorea leprosula in the valleys and Shorea macroptera both on the ridges and in the valleys. The significant spatial aggregation in small-diameter trees of all the three species was explained by limited seed dispersal. At the large-diameter trees, only S. macroptera showed random distribution and this might further prove that S. macroptera is habitat generalist, whilst S. curtisii and S. leprosula are habitat specific. The levels of genetic diversity estimated based on five microsatellite loci were high and comparable in all the three studied species. As the three studied species reproduced mainly through outcrossing, the observed high levels of genetic diversity might support the fact that the plant mating system can be used as guideline to infer the levels of genetic diversity, regardless of whether the species is habitat specific or habitat generalist. The lack of spatial genetic structure but significant aggregation in the small-diameter trees of all the three species might indicate limited seed dispersal but extensive pollen flow. Hence, if seed dispersal is restricted but pollen flow is extensive, significant spatial aggregation but no spatial genetic structure will be observed at the small-diameter trees, regardless of whether the species is habitat specific or habitat generalist. The inferred extensive pollen flow might indicate that energetic pollinators are involved in the pollination of Shorea species in the hill dipterocarp forests.  相似文献   

8.
By maintaining a forest-like structure, shaded cocoa plantations contribute to the conservation of ants that usually live in the soil, leaf litter or canopy of tropical forests. Here we synthesize the available information on the diversity and community structure of ants in shaded cocoa plantations in the Atlantic forest region of Brazil, compare ant assemblages in cocoa agroforests with forests and other forms of agriculture, and discuss how these shaded plantations contribute to the conservation of the ants in the Atlantic Forest region. We also discuss ants of economical importance and of special interest, including Camponotus, Dolichoderus, Gnamptogenys, Pachycondyla, Pseudomyrmex and other litter dwelling genera. We discuss the situation of the tramp ant Wasmannia auropunctata in the Bahian cocoa-producing region where it is considered as native, and that of the two cryptobiotic genera Thaumatomyrmex and Typhlomyrmex, as well as that of proven and possible endangered army ant and Ponerini species. A total of 192 ant species from four strata were found in extensive sampling of a cocoa plantation with a relatively simple shade canopy (comprised primarily of Erythrina). Species richness in the cocoa plantations corresponded roughly to that of low diversity native forests, and species composition of cocoa plantations was most similar to native habitats (forest and mangroves) while ant composition in other agricultural habitats was most similar to that of urban areas. Although occurrences of Wasmannia auropunctata were similar in cocoa plantations and forests, abundance of Thaumatomyrmex and Typhlomyrmex, generally thought to be rare ants, was relatively high in cocoa plantations. These results, from cocoa plantations with relatively simple shade, demonstrate the importance of cocoa for ant conservation in the Atlantic forest region of Brazil. It is likely that cocoa plantations with a greater number of vegetation strata and higher tree species richness (such as traditional cabruca plantations) provide even more important habitat for ants generally and for ant species of conservation concern.  相似文献   

9.
  1. The shift from shade‐intolerant species to shade‐tolerant mesophytic species in deciduous and mixed forests of the temperate zone is well described in studies from North America. This process has been termed mesophication and it has been linked to changes in fire regime. Fire suppression results in the cessation of establishment of heliophytic, fire‐dependent tree species such as oak (Quercus) and pine (Pinus). Due to the scarcity of old‐growth forests in Europe, data on long‐term compositional changes in mixed forests are very limited, as is the number of studies exploring whether fire played a role in shaping the dynamics.
  2. The aim of this study was to reconstruct tree succession in a 43‐ha natural mixed deciduous forest stand in Bia?owie?a Forest (BF), Poland using dendrochronological methods. In addition, the presence of aboveground fire legacies (charred and fire‐scarred deadwood) enabled the fire history reconstruction.
  3. Dendrochronological data revealed tree establishment (Quercus) back to the end of the 1500s and fires back to 1659. Under a regime of frequent fires until the end of the 18th century, only oak and pine regenerated, sporadically. A shift in the fire regime in the first half of the 19th century triggered oak and pine cohort regeneration, then gradually spruce (Picea) encroached. Under an increasingly dense canopy and less flammable conditions, regeneration of shade‐tolerant Carpinus, Tilia, and Acer began simultaneously with the cessation of oak and pine recruitment.
  4. Synthesis. The study reports the first evidence of mesophication in temperate Europe and proves that fire was involved in shaping the long‐term dynamics of mixed deciduous forest ecosystems. Our data suggest that fire exclusion promoted a gradual recruitment of fire‐sensitive, shade‐tolerant species that inhibited the regeneration of oak and pine in BF.
  相似文献   

10.
Non-native, invasive glossy buckthorn (Frangula alnus P. Mill.) threatens North American forests by inhibiting tree regeneration. While glossy buckthorn commonly invades younger, developing forests, we hypothesized that this species is competitively excluded as secondary succession proceeds. Specifically, we tested the hypothesis that glossy buckthorn mortality in New Hampshire forests is associated with low levels of photosynthetically active radiation (PAR), low levels of nutrients in the soil, and greater abundance of shade tolerant tree species. Twenty-six living and 26 dead glossy buckthorn individuals were randomly selected on three, mid-successional study sites in southeastern New Hampshire, USA. Shrub ages, indicated by wood ring counts, showed that both living and dead shrubs were members of the same cohort, roughly 16–18 years of age. Living and dead shrubs were compared as to (1) tree basal area in the surrounding forest (estimated by plot sampling), (2) light intensity in the vicinity of the buckthorn crowns (measured by Sunfleck Ceptometer), (3) canopy openness and % total transmitted PAR (estimated by hemispheric photography), and (4) concentrations of available Ca, P, Mg, and K in the B horizon. Relative to live buckthorn shrubs, dead individuals were associated with greater basal area of shade tolerant species, decreased PAR in the vicinity of shrub crown, and decreased soil concentrations of Ca, P, and Mg. The results are consistent with the hypothesis that competition for light and perhaps nutrients limits the ability of glossy buckthorn to persist in late successional stands. If these relationships are causal, active removal of glossy buckthorn might not be required to reduce its abundance in late successional stands.  相似文献   

11.
In a temperate riparian forest, the effects of substrate types, canopy gaps and conspecific seedfall density were investigated on the seed-to-seedling process for the five dominant species (Aesculus turbinata, Fagus crenata, Acer mono, Pterocarya rhoifolia and Cercidiphyllum japonicum). Densities of seedfall and subsequent seedling recruits were measured in the stand over a period of 6 years. A model assuming that local density of seedling recruits is proportional to seedfall density in the preceding year significantly explained a spatial variation in seedling recruits for all species. Several environmental factors were then added. Substrate composition had a positive effect on P. rhoifolia and C. japonicum. P. rhoifolia was favored by gravel substrate, which also explained the adult distribution of this species in this forest. C. japonicum appeared to be facilitated by a mineral-soil substrate. However, the distributions of this substrate and adults of C. japonicum did not follow each other closely. A. mono was negatively affected by gaps, and F. crenata was negatively affected by conspecific seedfall density. In contrast, A. turbinata was not significantly affected by any of the environmental factors tested. The microenvironmental heterogeneity in this forest explained species coexistence to a limited extent in the context of seed-to-seedling processes. Performances at later stages of the life-cycle and/or catastrophic disturbances (e.g. landslides) might have a stronger influence on species coexistence in this forest.  相似文献   

12.
Understorey shade plants are seasonally exposed to dramatic changes in light conditions in deciduous forests related with the dynamics of the overstorey leaf phenology. These transitions are commonly followed by changes in herb plant communities, but shade-tolerant evergreen species must be able to adapt to changing light conditions. In this work we checked the photoprotective responses of evergreen species to acclimate to the shady summer environment and reversibly de-acclimate to a more illuminated environment after leaf fall on deciduous overstoreys. For that purpose we have followed the process of light acclimation in leaves of common box (Buxus sempervirens) during the winter to spring transition, which decrease irradiance in the understorey, and conversely during the transition from summer to autumn. Four parameters indicative of the structure and degree of acclimation of the photosynthetic apparatus have been studied: chlorophyll a/b ratio which is supposed to be inversely proportional to the antenna size, α/β-carotene which increases in shade acclimated leaves and the pools of α-tocopherol and xanthophyll cycle pigments (VAZ) which are two of the main photoprotection mechanisms in plants. Among these parameters, chlorophyll a/b ratio and VAZ pool responded finely to changes in irradiance indicating that modifications in the light harvesting size and photoprotective capacity contribute to the continuous acclimation and de-acclimation of long-lived evergreen leaves.  相似文献   

13.
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances.  相似文献   

14.
Question: Do New Zealand tree ferns have recognizable shade tolerance niches? Location: Lowland temperate rain forest of New Zealand (41°20′S, 174°58′E). Methods: Growth, death and recruitment of five tree fern species were estimated from a 38‐year record of stem heights, collected within a 2.25‐ha block of forest, and electron transport rates (ETR) of photosystem II of fronds were measured. Results: Two species of Cyathea were comparatively common (603 and 351 stems in total) and two were comparatively rare (155 and 17 stems in total) on the site. The common species had lower rates of growth, recruitment and mortality than the rare species, had skewed age distributions typical of shade‐tolerant species and were probably recruited soon after a catastrophic earthquake in 1855. The two rare species were failing to recruit under closed forests; their age distributions indicated that all had regenerated long after the earthquake. ETR were higher for faster‐growing than for the shade‐tolerant species. A tree fern that regenerates vegetatively from aerial buds, Dicksonia squarrosa, was common on the site (361 stems in total). Its age distribution suggested it was relatively shade tolerant, but its mortality and recruitment rates were much higher than those of the two shade‐tolerating Cyathea species, suggesting that this multi‐stemmed species functions differently from the monopodial Cyathea species. Conclusions: New Zealand Cyathea tree ferns occupy distinct niches along a shade tolerance spectrum and their relative abundances are strongly influenced by disturbance history. The study provides evidence that tree fern species differ strongly in their responses to canopy disturbance and are not ecologically equivalent.  相似文献   

15.
To elucidate how enriched CO2 atmospheres, soil fertility, and light availability interact to influence the long-term growth of tree seedlings, six co-occurring members of temperate forest communities including ash (Fraxinus americana L.), gray birch (Betula populifolia), red maple (Acer rubrum), yellow birch (Betula alleghaniensis), striped maple (Acer pensylvanicum), and red oak (Quercus rubra L.) were raised in a glasshouse for three years in a complete factorial design. After three years of growth, plants growing in elevated CO2 atmospheres were generally larger than those in ambient CO2 atmospheres, however, magnitudes of CO2-induced growth enhancements were contingent on the availability of nitrogen and light, as well as species identity. For all species, magnitudes of CO2-induced growth enhancements after one year of growth were greater than after three years of growth, though species' growth enhancements over the three years declined at different rates. These results suggest that CO2-induced enhancements in forest productivity may not be sustained for long periods of time. Additionally, species' differential growth responses to elevated CO2 may indirectly influence forest productivity via long-term species compositional changes in forests.  相似文献   

16.
Seedlings of six major European temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba, Pinus sylvestris) were exposed to 360, 500, and 660 μL CO2 L?1 in the understorey of a 120‐y‐old forest over two growing seasons. Seedlings rooted in the natural forest soil within 36 open‐top chambers (12 OTCs per CO2 treatment), each with a different known quantum flux density (QFD) ranging from 0.36 to 2.16 mol m?2 d?1 (= 0.8% to 4.8% of full sun). In contrast to a frequent assumption the natural CO2 concentration in the understorey is close to the ambient concentration in the free atmosphere during daytime. The CO2‐effect on seedling growth differed greatly among species and was strongly codetermined by microsite‐specific QFD. Biomass production in the deep‐shade tolerant species Fagus and Taxus increased by 73% and 37% under elevated CO2 in low QFD microsites but was not significantly different among CO2‐treatments in high QFD microsites. The less shade‐tolerant species Acer, Quercus, and Abies showed no significant response to elevated CO2 in low QFD microsites, but increased their biomass by 39%, 25%, and 55% in high QFD microsites. In the shade‐intolerant Pinus, seedling survival was too low for a safe conclusion. Our data showed that the largest relative responses to increasing CO2 occurred at a comparatively small increase from 360 to 500 μL L?1 with only small and non‐significant changes with a further increase to 660 μL L?1. Subtle shifts in the availability of light can totally reverse interspecific differences in the CO2 response. Given these different responses, we conclude that increasing atmospheric CO2 is likely to induce changes in species composition of temperate forests due to altered chances of recruitment. However, these shifts will depend on light patterns in the understorey, and thus on canopy structure, disturbance patterns and forest management.  相似文献   

17.
18.
This study examined four species of Syzygium (S. firmum, S. makul, S. operculatum, S. rubicundum) Myrtaceae, a tree genus that dominates the canopy of rain forests of south‐west Sri Lanka. Syzygium spp. occupy differing habitats with relation to succession and forest topography. We examined differences in leaf morphology and physiology in response to amount of shade, an important environmental variable affecting Syzygium distribution within the forest. To study change in leaf structure and physiology, environmental shelters were constructed simulating forest shade that differed in quality, quantity and duration. Seedlings were exposed to: (i) 0% shade (full sun, FS), red : far red (R : FR) ratio 1.27; (ii) 65% shade (large opening, LO) with direct sunlight similar to the centre of a large canopy opening, R : FR ratio 1.27; (iii) 82% shade (small opening, SO) with direct sunlight similar to the centre of a small canopy opening, R : FR ratio 1.27; (iv) 58% uniform light shade (LS) with a quality similar to the outside edge of a large canopy opening, R : FR ratio 1.05; (v) 85% uniform medium shade (MS) with a quality similar to the inside forest edge of a large canopy opening, R : FR ratio 0.97; (vi) 99% uniform deep shade (DS) similar to that of the forest understorey, R : FR ratio 0.23. The shelters were constructed in a large open area at the field station of the Sinharaja World Heritage site, Sri Lanka. Seedlings of each species were grown for two years in their respective shade treatments before physiological, morphological and anatomical measurements were made on leaves. Variation in leaf structure and physiology between the species was associated with differences in shade‐tolerance and water‐use. All species increased in photosynthesis rates and dimensions in leaf structure (leaf blade and cuticle thickness, stomatal density, thickness of upper and lower epidermis, and thickness of palisade mesophyll) with decrease in shade. In contrast, stomatal conductivity was highest in the DS (99% shade) treatment. Leaves of Syzygium firmum were thickest and largest in area. S. firmum also had highest photosynthesis in the SO (82% shade) treatment. S. firmum was the most shade‐tolerant of all species: it grows well in low shade and its leaf structure suggests it to be the most conservative in water‐use of the Syzygium spp. In the forest S. firmum can persist in the forest shade as established seedlings, but grows best within canopy openings of late‐seral rain forest. Leaves of S. operculatum were thinnest but had highest stomatal densities of the four species. S. operculatum is considered shade‐intolerant, with a leaf structure suggesting it to be prone to desiccation, and by implication susceptible to drought. S. operculatum is found along streams within early seral rain forest habitat, often originating on stream banks after land clearance for cultivation. In the FS (0% shade) treatment, S. rubicundun had highest photosynthesis rates and greatest number of leaves but smallest leaf area of the Syzygium species. S. rubicundum is more shade‐intolerant but more efficient in water‐use than S. operculatum. S. rubicundum is a mid‐seral canopy tree of the midslope stands that are thought to have originated after catastrophic windthrows or swidden cultivation. The leaf physiology and structure of S. makul suggests it to be both moderately shade‐tolerant and conservative in water‐use. It is the most widely distributed Syzygium species across the topography of late‐seral rain forest. We suggest forest disturbance and hydrology are important environmental factors that influence distribution of Syzygium species across the topography. Results from this study contribute to a body of knowledge suggesting that canopy tree species of rain forests in south‐west Sri Lanka have discrete affinities to topography and differences in successional status, and that adaptations in leaf structure and physiology are indicative of such phenomena. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141 , 365–377.  相似文献   

19.
The Atlantic forests of southern Bahia in Brazil present great species richness and a high degree of endemism. A large part of these native forests were transformed into cacao plantations in an agroforestry system known locally as cabrucas, where native trees were culled and cacao was planted under the shade of remaining trees. The present study analyzed the influence of time of implantation (age) and time of abandonment of management practices on tree species diversity of cabruca plantations to evaluate the capacity for conservation and recovery of species richness of native Atlantic Forest trees in cabrucas. Phytosociological surveys were conducted in five cabrucas with different conditions of age and state of abandonment. All trees, including hemiepiphytes and excluding the cacao plants, with a minimum stem diameter of 10 cm at breast height, were surveyed within a 3-ha sampling area in each plantation. A total of 2514 individual trees belonging to 293 species and 52 families were recorded in the five cabrucas. The Shannon diversity index varied from 3.31 to 4.22 among the cabrucas and was positively correlated with the time of abandonment (r = 0.97). The new cabrucas showed the highest values of estimated total richness (Chao) and the highest proportion of late successional species than the old ones. All areas preserved a very high proportion of native forest species while the three old cabrucas showed a higher proportion of exotic species than the two new ones. Thus the exotic species seem to replace more of the native species in the long run because of management practices and local preferences. The cabrucas presented also a high capacity for the regeneration of tree species richness after abandonment. Simple alterations in management practices could improve the recruitment of late successional species in these areas. Economic incentives may be necessary for the farmers to adopt management practices to retain native species which bring no economic returns.  相似文献   

20.
Morphological plasticity was studied for advanced regeneration trees in different light environments of the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were very shade tolerant silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.), and midtolerant Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected for measurements in different stands from two different geographical locations. Various morphological traits (specific leaf area, live crown ratio, crown width to length ratio, terminal to lateral ratio, number of internodal shoots, number of shoots in terminal whorl, stem symmetry, stem orientation, stem forking) for each regenerating tree were measured during summers of 2001 and 2002. Percentage of above canopy light and stand basal area measures were used to assess the available growing space for each seedling/sapling. Regression relationships were developed for the different morphological indicators as a function of these two variables. All species adapted their morphology along the gradient in light and basal area. Spruce seemed to be less adapted to low light conditions than both fir and beech. However, no significant differences in terms of shade tolerance were detected using the above indicators. In really dense stand conditions (less than 20% above canopy light and stand basal area above 36 m2 ha−1), probability for stem forking in beech increased. In open, all three species adapted their morphology for vigorous growth. Under such conditions, spruce was better adapted than fir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号