首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the epidermal growth factor receptor by phosphorylation   总被引:5,自引:0,他引:5  
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function.  相似文献   

2.
L de Meis  M A Grieco  A Galina 《FEBS letters》1992,308(2):197-201
During steady-state, the Pi released in the medium is derived from glucose-6-phosphate which continuously regenerates the ATP hydrolyzed. A membrane potential (delta psi) can be built up in submitochondrial particles using glucose-6-phosphate and hexokinase as an ATP-regenerating system. The energy derived from the membrane potential thus formed, can be used to promote the energy-dependent transhydrogenation from NADH to NADP+ and the uphill electron transfer from succinate to NAD+. In spite of the large differences in the energies of hydrolysis of ATP (delta G degrees = -7.0 to -9.0 kcal/mol) and of glucose-6-phosphate (delta G degrees = -2.5 kcal/mol), the same ratio between Pi production and either NADPH or NADH formation were measured regardless of whether millimolar concentrations of ATP or a mixture of ADP, glucose-6-phosphate and hexokinase were used. Rat liver mitochondria were able to accumulate Ca2+ when incubated in a medium containing hexokinase, ADP and glucose-6-phosphate. The different reaction measured with the use of glucose-6-phosphate and hexokinase were inhibited by glucose concentrations varying from 0.2 to 2 mM. Glucose shifts the equilibrium of the reaction towards glucose-6-phosphate formation thus leading to a decrease of the ATP concentration in the medium.  相似文献   

3.
The autophosphorylation, from [gamma-32P]ATP, of insulin and epidermal growth factor receptors in rat liver endosomes peaked at 2-5 min and declined thereafter. When autophosphorylation from either [gamma-32P]ATP or unlabeled ATP was stopped after 5 min by adding excess EDTA +/- ATP, the phosphotyrosine (PY) content of each receptor decreased at 37 degrees C with a t 1/2 of 1.6 min. This was equally so whether the PY content of 32P-labeled receptors was analyzed by autoradiography of KOH-treated gels or by Western blotting with PY antibodies of immunoprecipitated receptors. The dephosphorylation reaction was strictly dependent on the presence of sulfhydryl, was unaffected by the addition of rat liver cytosol, and was temperature-dependent. The phosphotyrosine phosphatase(s) (PTPase(s)) appeared to be tightly anchored to the endosomal membrane, since the dephosphorylation reaction was unaffected by sodium carbonate and 0.6 M KCl treatments. However, treatment with Triton X-100 abolished dephosphorylation, implying an intimate association between the PTPase(s) and its substrate in an intact membrane environment. The powerful insulinomimetic agent pervanadate was the most potent inhibitor (50% inhibition at 1 microM). Increasing the dose of injected ligand augmented the rate of insulin and decreased that of EGF receptor dephosphorylation, respectively. Immunoblotting with specific antibodies failed to identify PTPase 1B or T-cell PTPase in ENs, whereas positive signals were seen in plasma membrane. These studies indicate that the phosphorylation state of receptor tyrosine kinases is dynamically regulated, with dephosphorylation, by closely associated PTPase(s), playing an important role.  相似文献   

4.
The effect of self-phosphorylation on the protein-tyrosine kinase activity of the epidermal growth factor receptor has been investigated using immunoaffinity-purified protein. Enzyme was first incubated for various times with excess ATP to phosphorylate it to differing extents; the ability of the enzyme to phosphorylate exogenous peptide substrates was then measured as a function of its self-phosphorylation state. Increasing self-phosphorylation to 1.3-1.8 mol of phosphate mol-1 of epidermal growth factor receptor enhanced protein-tyrosine kinase activity 2-3-fold. Comparison of the kinetics of protein-tyrosine kinase activity at different ATP concentrations revealed significant differences between unphosphorylated and phosphorylated enzyme. At low levels of ATP, a double reciprocal plot of the protein-tyrosine kinase activity of the unphosphorylated enzyme was hyperbolic, suggesting that ATP may act as an activator of the enzyme. At higher ATP concentrations, where greater levels of self-phosphorylation occurred during the reaction, the kinetics appeared linear and similar to those of the phosphorylated enzyme. Dose-response studies using three different peptide substrates (angiotensin II, gastrin, and a synthetic peptide corresponding to the self-phosphorylation site in p60v-src) showed that exogenous substrates inhibit receptor self-phosphorylation. In each case, half-maximal inhibition was observed at a peptide concentration approximately equal to the substrate's Km. A kinetic analysis comparing peptide phosphorylation using unphosphorylated and prephosphorylated enzyme indicated that the self-phosphorylation site can act as a competitive inhibitor (alternate substrate) versus peptide substrates. These results suggest that self-phosphorylation of the epidermal growth factor receptor removes a competitive constraint so that exogenous substrates can be more readily phosphorylated.  相似文献   

5.
ATPase activities were measured in 10 mM MgCl2, 5 mM ATP, 1 mM ADP, and 1 microM FCCP with submitochondrial particles from bovine heart that had been stimulated by delta mu H+-forming substrates and with particles whose natural inhibitor protein was partially removed by heating. The activities were not linear with time. With both particles, the rate of ATP hydrolysis in the 7-fold greater than that in the steady state. Pre-steady-state and steady-state kinetic studies showed that the decrease of ATPase activity was due to the binding of ADP in a high-affinity site of the enzyme (K0.5 of 10 microM). Inhibition of ATP hydrolysis was accompanied by the binding of approximately 1 mol of ADP/mol of particulate F1; 10 microM ADP gave half-maximal binding. ADP could be replaced by IDP, but with an affinity 50-fold lower (K0.5 of 0.5 mM). Maximal inhibition by ADP and IDP was achieved in less than 5 s. Inhibition was enhanced by uncouplers. Even in the presence of pyruvate kinase and phosphoenolpyruvate, the rates of hydrolysis were about 2.5-fold higher in the first seconds of reaction than in the steady state. This decrease of ATPase activity also correlated with the binding of nearly 1 mol of ADP/mol of F1. This inhibitory ADP remained bound to the enzyme after several thousand turnovers. Apparently, it is possible to observe maximal rates of hydrolysis only in the first few catalytic cycles of the enzyme.  相似文献   

6.
The specific tyrosine phosphorylation of glucose-6-phosphate dehydrogenase (G6PDH) by the epidermal growth factor (EGF) receptor in vitro is demonstrated. The Km values of the substrate G6PDH and of ATP for the receptor tyrosine kinase were ca. 1 and 10 microM, respectively. The rate of phosphorylation was EGF dependent, with a four-fold increase in Vmax in the presence of EGF. The phosphorylation was stimulated maximally by 0.2 microM or greater EGF, with an ED50 of ca. 20 nM which is consistent with the affinity of the solubilized receptor for EGF. Using conditions of 5 microM G6PDH, 100 microM ATP, 5 mM Mg2+, and 1 mM Mn2+, up to 0.3 mol phosphate was incorporated into 1 mol of the 55-kDa subunit of Baker's yeast G6PDH. Tryptic peptide mapping revealed several unique phosphopeptides for both Baker's yeast and bovine adrenal G6PDH. The patterns of phosphopeptides for a given enzyme were identical for basal and EGF-stimulated phosphorylation.  相似文献   

7.
The Gibbs-Donnan near-equilibrium system of heart   总被引:3,自引:0,他引:3  
The gradients of the major inorganic ions across the plasma membrane of heart were examined to determine the factors controlling the extent and direction of the changes induced during injury, certain diseases, and electrolyte disturbances. The ionic environment was altered by changing only the concentration of inorganic phosphate, [sigma Pi]o, from 0 to 1.2 to 5 mM in the Krebs-Henseleit buffer perfusing working rat hearts. Raising [sigma Pi]o from 1.2 to 5 mM resulted in a decrease in total Mg2+ content and calculated free cytosolic [Mg2+] from 0.44 to 0.04 mM, conversion of 4 mmol of MgATP2- to ATP4- and a decrease in measured intracellular [Cl-]i from 41 to 16 mM. At all levels of [sigma Pi]o, both the [Na+]i and [K+]i were invariant at about 3 mM and 130 mM, respectively, as was the energy of hydrolysis of the terminal phosphate bond of sigma ATP, delta GATP Hydr, of -13.2 kcal/mol. The relationship maintained between the ions on both sides of the plasma membrane by the 3Na+/2K(+)transporting ATPase (EC 3.6.1.37) and an open K+ channel was: (formula; see text) The energy of the gradients of the other inorganic ions across the plasma membrane, delta G[ion]o/i, exhibited three distinct quanta of energy derived from the prime quantum of delta GATP Hydr of -13.2 kcal/mol. The second quantum was about one-third of delta GATP Hydr or +/- 4.4 kcal/mol and comprised the delta G[Na+]o/i, delta G[Mg2+]o/i, and delta G[HPO42-]o/i. These results indicated near-equilibrium was achieved by the reactants of the 3Na+/2K(+)-ATPase, the K+ channel, the Na(+)-Pi co-transporter, and a postulated net Mg2+/H2PO4- exchanger. The third quantum was one-third of delta G[Na+]o/i or about +/- 1.5 kcal/mol and comprised delta G[H+]o/i, delta G[HCO3-]o/i, and delta G[Cl-]o/i. The delta G[K+]o/i was 0, indicating near-equilibrium between the chemical energy of [K+]o/i and the E across the plasma membrane of -83 mV. It is concluded that the gradients of the major inorganic ions across the plasma membrane and the potential across that membrane constitute a Gibbs-Donnan equilibrium system catalyzed by transport enzymes sharing common substrates. The chemical and electrical energies of those gradients are equal in magnitude and opposite in sign to the chemical energy of ATP hydrolysis.  相似文献   

8.
The observed equilibrium constants (Kobs) of the P-choline hydrolysis reaction have been determined under physiological conditions of temperature (38 degrees) and ionic strength (0.25 M) and physiological ranges of pH and free [Mg2+]. Using sigma and square brackets to indicate total concentrations: (see article.) The value of Kobs has been found to be relatively insensitive to variations in pH and free [Mg2+]. At pH 7.0 and taking the standard state of liquid water to have unit activity ([H2O] = 1), Kobs = 26.6 M at free [Mg2+] = 0 [epsilon G0obs = -2.03 kcal/mol(-8.48 kJ/mol)], 26.8 M at free [Mg2+] = 10(-3) M, and 28.4 M at free [Mg2+] = 10(-2) M. At pH 8.0, Kobs = 18.8 M at free [Mg2+] = 0, 19.2 M at free [Mg2+] = 10(-3), and 22.2 M at free [Mg2+] = 10(-2) M. These values apply only to situations where choline and Pi concentrations are both relatively low (such as the conditions found in most tissues). At higher concentrations of phosphate and choline, the value of Kobs becomes significantly increased since HPO42- complexes choline weakly (association constant = 3.3 M-1). The value of K at 38 degrees and I = 0.25 M is calculated to be 16.4 +/- 0.3 M [epsilonG0 = 1.73 kcal/mol (-7.23 kJ/mol)]. The K for the P-choline hydrolysis reaction has been combined with the K for the ATP hydrolysis reaction determined previously under physiological conditions to calculate a value of 4.95 X 10(-3 M [deltaG0 j.28 kcal/mol (13.7 kJ/mol] for the K of the choline kinase reaction (EC 2.7.1.32), an important step in phospholipid metabolism: (see article.) Likewise, values for Kobs for the choline kinase reaction at 38 degrees, pH 7.0, and I = 0.25 M have been calculated to be 5.76 X 10(4) [deltaG0OBS = -6.77 KCAL/MOL (-28.3 KJ/mol)] at [Mg2+] = 0; 1.24 X 10(4) [deltaG0obs = -5.82 kcal/mol (-24.4 kJ/mol)] at [Mg2+] = 10(-3) M and 8.05 X 10(3) [delta G0obs = -5.56 kcal/mol (-23.3 kJ/mol)] at [Mg2+ = 10(-2) M. Attempts to determine the Kobs of the choline kinase reaction directly were unsuccessful because of the high value of the constant. The results indicate that in contrast to the high deltaG0obs for the hydrolysis of the ester bond of acetylcholine, the deltaG0obs for the hydrolysis of the ester bond of P-choline is quite low, among the lowest known for phosphate ester bonds of biological interest.  相似文献   

9.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle accumulate Ca2+ at the expense of ATP hydrolysis. The heat released during the hydrolysis of each ATP molecule varies depending on whether or not a Ca2+ gradient is formed across the vesicle membrane. After Ca2+ accumulation, a part of the Ca2+-ATPase activity is not coupled with Ca2+ transport (Yu, X., and Inesi, G. (1995) J. Biol. Chem. 270, 4361-4367). I now show that both the heat produced during substrate hydrolysis and the uncoupled ATPase activity vary depending on the ADP/ATP ratio in the medium. With a low ratio, the Ca2+ transport is exothermic, and the formation of the gradient increases the amount of heat produced during the hydrolysis of each ATP molecule cleaved. With a high ADP/ATP ratio, the Ca2+ transport is endothermic, and formation of a gradient increased the amount of heat absorbed from the medium. Heat is absorbed from the medium when the Ca2+ efflux is coupled with the synthesis of ATP (5.7 kcal/mol of ATP). When there is no ATP synthesis, the Ca2+ efflux is exothermic (14-16 kcal/Ca2+ mol). It is concluded that in the presence of a low ADP concentration the uncoupled ATPase activity is the dominant route of heat production. With a high ADP/ATP ratio, the uncoupled ATPase activity is abolished, and the Ca2+ transport is endothermic. The possible correlation of these findings with thermogenesis and anoxia is discussed.  相似文献   

10.
The epidermal growth factor (EGF) receptor, which exhibits intrinsic protein tyrosine kinase activity, undergoes a rapid, intramolecular self-phosphorylation reaction following EGF activation. The primary sites of tyrosine self-phosphorylation in vivo are located in the extreme carboxyl-terminal region of the molecule, principally Tyr-1173. To test the biological and biochemical consequences of this EGF receptor self-phosphorylation, we made the mutation Tyr----Phe-1173. Membranes containing the mutated receptor exhibited an ED50 for EGF activation of tyrosine kinase activity equivalent to control receptor at both high and low substrate levels, but exhibited reduced basal and EGF-stimulated tyrosine kinase activity at low, non-saturating substrate levels. The Tyr----Phe-1173 mutant possessed high affinity EGF binding and could still self-phosphorylate other tyrosine sites in an intramolecular fashion with a low Km for ATP (200 nM), suggesting that this alteration did not grossly change receptor structure. When EGF-dependent growth of Chinese hamster ovary cells expressing comparable levels of control or mutant EGF receptor was measured, the ability of the mutant receptor to mediate cell growth in response to EGF was reduced by approximately 50%, yet both receptors exhibited a similar affinity and ED50 for EGF. These results support the concept that this self-phosphorylation site can act as a competitive/alternate substrate for the EGF receptor, and that this region of the molecule is important in modulating its maximal biological activity.  相似文献   

11.
The repair of phosphodiester bonds in nicked DNA is catalyzed by DNA ligases. Ligation is coupled to cleavage of a phosphoanhydride bond in a nucleotide cofactor resulting in a thermodynamically favorable process. A free energy value for phosphodiester bond formation was calculated using the reversibility of the T4 DNA ligase reaction. The relative number of DNA nicks to phosphodiester bonds in a circular plasmid DNA, formed during this reaction at fixed concentrations of ATP to AMP and PP(i), was quantified. At 25 degrees C, pH 7, the equilibrium constant (K(eq)) for the ligation reaction is 3.89 x 10(4) m. This value corresponds to a standard free energy (DeltaG degrees ') of -6.3 kcal mol(-1). By subtracting the known energy contribution due to hydrolysis of ATP to AMP and PP(i), DeltaG degrees ' for the hydrolysis of a DNA phosphodiester bond is -5.3 kcal mol(-1).  相似文献   

12.
The thermodynamic binding parameters and crystal structure for streptavidin-peptide complexes where the peptide sequences were obtained by random screening methods are reported. The affinities between streptavidin and two heptapeptides were determined by titrating calorimetric methods [Phe-Ser-His-Pro-Gln-Asn-Thr, Ka = 7944 (+/- 224) M-1, delta G degrees = -5.32 (+/- 0.01) kcal/mol, and delta H degrees = -19.34 (+/- 0.48) kcal/mol; His-Asp-His-Pro-Gln-Asn-Leu, Ka = 3542 (+/- 146) M-1, delta G degrees = -4.84 (+/- 0.03) kcal/mol, and delta H degrees = -19.00 (+/- 0.64) kcal/mol]. The crystal structure of streptavidin complexed with one of these peptides has been determined at 2.0-A resolution. The peptide (Phe-Ser-His-Pro-Gln-Asn-Thr) binds in a turn conformation with the histidine, proline, and glutamine side chains oriented inward at the biotin-binding site. A water molecule is immobilized between the histidine and glutamine side chains of the peptide and an aspartic acid side chain of the protein. Although some of the residues that participate in binding biotin also interact with the screened peptide, the peptide adopts an alternate method of utilizing binding determinants in the biotin-binding site of streptavidin.  相似文献   

13.
The alpha beta-methylene analogues of ATP and ADP, [alpha beta CH2]ATP and [alpha beta CH2]ADP, are substrates for creatine kinase. However, the rate of the phosphoryl transfer reaction catalysed is about 10(-5)-times lower than that with normal ATP. The affinities of the analogues (especially [alpha beta CH2]ADP) for the enzyme are lower than those of the normal substrates. The equilibrium constant at 25 degrees C, measured using 31P NMR, for the reaction Mg[alpha beta CH2]ATP + creatine in equilibrium Mg[alpha beta CH2]ADP + phosphocreatine + H+ is 2.2 X 10(-12) M compared with a value of 2.5 X 10(-10) M for the same reaction with the normal substrates, corresponding to a difference in delta G0 values of 11.7 kJ X mol-1. It follows that delta G0 for the hydrolysis of the terminal phosphate group of Mg[alpha beta CH2]ATP is less favourable by 11.7 kJ X mol-1 than that for MgATP.  相似文献   

14.
A simple and reproducible radioimmunoassay of the epidermal growth factor (EGF) receptor which uses 32P-labeled EGF receptor and anti-receptor monoclonal antibodies is reported. In vitro phosphorylation of A431 cell membranes with [gamma-32P]ATP in the presence of 20% dimethyl sulfoxide (which stimulates autophosphorylation of the EGF receptor) and 10 microM Na3VO4 (a potent inhibitor of phosphotyrosyl protein phosphatase) provides radiolabeled EGF receptor for radioimmunoassay without further purification. The most selective phosphorylation of the EGF receptor is achieved at ATP concentrations of 0.1-0.2 microM, which corresponds to the reported Km value for the autophosphorylation reaction of the EGF receptor (W. Weber, P.J. Bertics, and G.N. Gill, 1984, J. Biol. Chem. 259, 14631-14939). The incorporation of 32P into EGF receptors increases in proportion to the increase of ATP concentration up to 6 mol of labeled phosphate at 2.0 microM ATP. The label is entirely on tyrosine residues. The cell membranes can be stored at -70 degrees C for 3 months without loss of immunoreactivity and autophosphorylating activity. Standard curves for the radioimmunoassay were constructed employing either A431 cell membranes or whole cell homogenates containing a known amount of EGF receptor. The assay can detect 7 X 10(10) EGF receptor molecules or 20 ng of the receptor protein, and can quantitatively distinguish the difference in EGF receptor numbers between A431 cells and 29E2 and KB cells with 10-fold and 15-fold fewer receptors than A431 cells, respectively. 29E2 cells and KB cells express twofold more immunoreactive EGF receptors than EGF-binding sites. In contrast, A431 cells possess the same number of immunoreactive sites and receptor sites for EGF binding. To assess total EGF receptor expression, it is necessary to use a method which detects EGF receptors regardless of their intrinsic kinase activity, or capacity to bind EGF. This radioimmunoassay detects immunoreactive receptor molecules, even those which do not bind EGF.  相似文献   

15.
Difference spectroscopy was used to determine the equilibrium constants and thermodynamic parameters for the monomer-dimer association of bovine and porcine insulin and bovine proinsulin at pH 2.0 and 7.0. At pH 2 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine insulin were found to be -6.6 kcal/mol, -18 cal/mol-deg, and -12 kcal/mol, respectively. Porcine insulin behaved similarly to bovine insulin in its dimerization properties in that delta G degree 25, delta S degree, and delta H degree were found to be -6.8 kcal/mol, -14 cal/mol-deg, and -11 kcal/mol, respectively. At pH 7 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine insulin were found to be -7.2 kcal/mol, -16 cal/mol/deg, and -12 kcal/mol, respectively. At pH 7.0 delta G degree 25, delta S degree, and delta H degree for dimerization of porcine insulin were -6.7 kcal/mol, -11.6 cal/mol-deg, and -10 kcal/mol, respectively. The similarity in the thermodynamic parameters of both insulin species at the different pH's suggests that there are minimal structural changes at the monomer-monomer contact site over this pH range. The dimerization of both insulin species is under enthalpic control. This may suggest that the formation of the insulin dimer is not driven by hydrophobic bonding but, rather, is driven by the formation between subunits of four hydrogen bonds in an apolar environment. At pH 2 delta G degree 25, delta S degree, and delta H degree for dimerization of bovine proinsulin were found to be -5.3 kcal/mol, -26 cal/mol-deg, and -13 kcal/mol, respectively. At pH 7 delta G degree 25, delta S degree, and delta H degree for dimerization of proinsulin were -5.9 kcal/mol, -4.2 cal/mol-deg, and -7.2 kcal/mol, respectively. Although the presence of the C-peptide on proinsulin does not drastically affect the overall free energy change of dimer formation (as compared to insulin), the other thermodynamic parameters are rather drastically altered. This may be because of electrostatic interactions of groups on the C-peptide with groups on the B-chain which are near the subunit contact site in the insulin dimer.  相似文献   

16.
The complete exchange of strands between circular single-stranded and full length linear duplex DNAs promoted by the recA protein of Escherichia coli is dependent upon the hydrolysis of ATP and is strongly stimulated by the single-stranded DNA binding protein (SSB). In the presence of SSB, stable complexes of recA protein and single-stranded DNA are formed as an early step in the reaction. These complexes dissociate when the ADP/ATP ratio approaches a value of 0.6-1.5, depending upon reaction conditions. Thus, ATP hydrolysis never proceeds to completion but stops when 40-60% of the input ATP has undergone hydrolysis. recA protein can participate in a second round of strand exchange upon regeneration of the ATP. While 100-200 mol of ATP are hydrolyzed/mol of heteroduplex base pair formed under standard reaction conditions in the presence of SSB, this value is reduced to 16 at levels of ADP lower than that required to dissociate the complexes. ATP hydrolysis appears to be completely irreversible since efforts to detect exchange reactions using 18O probes have been unsuccessful.  相似文献   

17.
Different sarco/endoplasmic reticulum Ca(2+)-ATPases isoforms are found in blood platelets and in skeletal muscle. The amount of heat produced during ATP hydrolysis by vesicles derived from the endoplasmic reticulum of blood platelets was the same in the absence and presence of a transmembrane Ca(2+) gradient. Addition of platelets activating factor (PAF) to the medium promoted both a Ca(2+) efflux that was arrested by thapsigargin and an increase of the yield of heat produced during ATP hydrolysis. The calorimetric enthalpy of ATP hydrolysis (DeltaH(cal)) measured during Ca(2+) transport varied between -10 and -12 kcal/mol without PAF and between -20 and -24 kcal/mol with 4 microM PAF. Different from platelets, in skeletal muscle vesicles a thapsigargin-sensitive Ca(2+) efflux and a high heat production during ATP hydrolysis were measured without PAF and the DeltaH(cal) varied between -10 and -12 kcal/mol in the absence of Ca(2+) and between -22 up to -32 kcal/mol after formation of a transmembrane Ca(2+) gradient. PAF did not enhance the rate of thapsigargin-sensitive Ca(2+) efflux nor increase the yield of heat produced during ATP hydrolysis. These findings indicate that the platelets of Ca(2+)-ATPase isoforms are only able to convert osmotic energy into heat in the presence of PAF.  相似文献   

18.
We have previously reported that antibodies to phosphotyrosine recognize the phosphorylated forms of platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors (Zippel et al., Biochim. Biophys. Acta 881:54-61, 1986, and Sturani et al., Biochem. Biophys. Res. Commun. 137:343-350, 1986). In this report, the time course of receptor phosphorylation is investigated. In normal human fibroblasts, ligand-induced phosphorylation of PDGF and EGF receptors is followed by rapid dephosphorylation. However, in A431 cells the tyrosine-phosphorylated form of EGF receptor persists for many hours after EGF stimulation, allowing a detailed analysis of the conditions affecting receptor phosphorylation and dephosphorylation. In A431 cells, the number of receptor molecules phosphorylated on tyrosine was quantitated and found to be about 10% of total EGF receptors. The phosphorylated receptor molecules are localized on the cell surface, and they are rapidly dephosphorylated upon removal of EGF from binding sites by a short acid wash of intact cells and upon a mild treatment with trypsin. ATP depletion also results in rapid dephosphorylation, indicating that continuous phosphorylation-dephosphorylation reactions occur in the ligand-receptor complex at steady state. Phorbol 12-myristate 13-acetate added shortly before EGF reduces the rate and the final extent of receptor phosphorylation. Moreover, it also reduces the amount of phosphorylated receptors if it is added after EGF. Down-regulation of protein kinase C by chronic treatment with phorbol dibutyrate increases the receptor phosphorylation induced by EGF, suggesting a homologous feedback regulation of EGF receptor functions.  相似文献   

19.
The ADP(Mg2+)-deactivated, azide-trapped F0 x F1-ATPase of coupled submitochondrial particles is capable of ATP synthesis being incapable of ATP hydrolysis and ATP-dependent delta muH+ generation [FEBS Lett. (1995) 366, 29-32]. This puzzling phenomenon was studied further. No ATPase activity of the submitochondrial particles catalyzing succinate-supported oxidative phosphorylation in the presence of azide was observed when ATP was added to the assay mixture after an uncoupler. Rapid ATP hydrolysis was detected in the same system when ATP followed by an uncoupler was added. Less than 5% of the original ATPase activity was seen when the reaction (assayed with ATP-regenerating system) was initiated by the addition of ATP to the azide-trapped coupled particles oxidizing succinate either in the presence or in the absence of the uncoupler. High ATP hydrolytic activity was revealed when the reaction was started by the simultaneous addition of the ATP plus uncoupler to the particles generating delta muH+. The energy-dependent conversion of the enzyme into latent uncoupler-activated ATPase was prevented by free ADP (Ki approximately 20 microM) and was greatly enhanced after multiple turnovers in oxidative phosphorylation. The results suggest that the catalytic properties of F0 x F1 are delta muH+-dependent which is in accord with our hypothesis on different conformational states of the enzyme participating in ATP synthesis or hydrolysis.  相似文献   

20.
A new mechanism on regulation of mitochondrial energy metabolism is proposed on the basis of reversible control of respiration by the intramitochondrial ATP/ADP ratio and slip of proton pumping (decreased H+/e- stoichiometry) in cytochrome c oxidase (COX) at high proton motive force delta p. cAMP-dependent phosphorylation of COX switches on and Ca2+-dependent dephosphorylation switches off the allosteric ATP-inhibition of COX (nucleotides bind to subunit IV). Control of respiration via phosphorylated COX by the ATP/ADP ratio keeps delta p (mainly delta psi(m)) low. Hormone induced Ca2+-dependent dephosphorylation results in loss of ATP-inhibition, increase of respiration and delta p with consequent slip in proton pumping. Slip in COX increases the free energy of reaction, resulting in increased rates of respiration, thermogenesis and ATP-synthesis. Increased delta psi(m) stimulates production of reactive oxygen species (ROS), mutations of mitochondrial DNA and accelerates aging. Slip of proton pumping without dephosphorylation and increase of delta p is found permanently in the liver-type isozyme of COX (subunit VIaL) and at high intramitochondrial ATP/ADP ratios in the heart-type isozyme (subunit VIaH). High substrate pressure (sigmoidal v/s kinetics), palmitate and 3,5-diiodothyronine (binding to subunit Va) increase also delta p, ROS production and slip but without dephosphorylation of COX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号