首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.  相似文献   

3.
The stability of cell cycle checkpoint and regulatory proteins is controlled by the ubiquitin-proteasome degradation machinery. A critical regulator of cell cycle molecules is the E3 ubiquitin ligase SCFSkp2, known to facilitate the polyubiquitination and degradation of p27, E2F, and c-myc. SCFSkp2 is frequently deregulated in human cancers. In this study, we have revealed a novel link between the essential Epstein-Barr virus (EBV) nuclear antigen EBNA3C and the SCFSkp2 complex, providing a mechanism for cell cycle regulation by EBV. EBNA3C associates with cyclin A/cdk2 complexes, disrupting the kinase inhibitor p27 and enhancing kinase activity. The recruitment of SCFSkp2 activity to cyclin A complexes by EBNA3C results in ubiquitination and SCFSkp2-dependent degradation of p27. This is the first report of a viral protein usurping the function of the SCFSkp2 cell cycle regulatory machinery to regulate p27 stability, establishing the foundation for a mechanism by which EBV regulates cyclin/cdk activity in human cancers.  相似文献   

4.
Induction of checkpoint responses in G1, S, and G2 phases of the cell cycle after exposure of cells to ionizing radiation (IR) is essential for maintaining genomic integrity. Ataxia telangiectasia mutated (ATM) plays a key role in initiating this response in all three phases of the cell cycle. However, cells lacking functional ATM exhibit a prolonged G2 arrest after IR, suggesting regulation by an ATM-independent checkpoint response. The mechanism for this ataxia telangiectasia (AT)-independent G2-checkpoint response remains unknown. We report here that the G2 checkpoint in irradiated human AT cells derives from an overactivation of the ATR/CHK1 pathway. Chk1 small interfering RNA abolishes the IR-induced prolonged G2 checkpoint and radiosensitizes AT cells to killing. These results link the activation of ATR/CHK1 with the prolonged G2 arrest in AT cells and show that activation of this G2 checkpoint contributes to the survival of AT cells.  相似文献   

5.
To maintain genomic integrity DNA damage response (DDR), signaling pathways have evolved that restrict cellular replication and allow time for DNA repair. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), linked to growth inhibition. Its expression is repressed by mitogens but up-regulated during cell cycle arrest responses to anti-proliferative signals. Here we investigate the potential link between elevated CycG2 expression and DDR signaling pathways. Expanding our previous finding that CycG2 overexpression induces a p53-dependent G(1)/S phase cell cycle arrest in HCT116 cells, we now demonstrate that this arrest response also requires the DDR checkpoint protein kinase Chk2. In accord with this finding we establish that ectopic CycG2 expression increases phosphorylation of Chk2 on threonine 68. We show that DNA double strand break-inducing chemotherapeutics stimulate CycG2 expression and correlate its up-regulation with checkpoint-induced cell cycle arrest and phospho-modification of proteins in the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) signaling pathways. Using pharmacological inhibitors and ATM-deficient cell lines, we delineate the DDR kinase pathway promoting CycG2 up-regulation in response to doxorubicin. Importantly, RNAi-mediated blunting of CycG2 attenuates doxorubicin-induced cell cycle checkpoint responses in multiple cell lines. Employing stable clones, we test the effect that CycG2 depletion has on DDR proteins and signals that enforce cell cycle checkpoint arrest. Our results suggest that CycG2 contributes to DNA damage-induced G(2)/M checkpoint by enforcing checkpoint inhibition of CycB1-Cdc2 complexes.  相似文献   

6.
Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G?/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G?/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G?/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G?/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments.  相似文献   

7.
Lithium, a therapeutic agent for bipolar disorder, can induce G2/M arrest in various cells, but the mechanism is unclear. In this article, we demonstrated that lithium arrested hepatocellular carcinoma cell SMMC-7721 at G2/M checkpoint by inducing the phosphorylation of cdc2 (Tyr-15). This effect was p53 independent and not concerned with the inhibition of glycogen synthase kinase-3 and inositol monophosphatase, two well-documented targets of lithium. Checkpoint kinase 1 (Chk1), a critical enzyme in DNA damage-induced G2/M arrest, was at least partially responsible for the lithium action. The lithium-induced phosphorylation of cdc2 and G2/M arrest was abrogated largely by SB218078, a potent Chk1 inhibitor, as well as by Chk1 siRNA or the over-expression of kinase dead Chk1. Furthermore, lithium-induced cdc25C phosphorylation in 7721 cells and in vitro kinase assay showed that the activity of Chk1 was enhanced after lithium treatment. Interestingly, the increase of Chk1 activity by lithium may be independent of ataxia telangiectasia mutated (ATM)/ATM and Rad3-related (ATR) kinase. This is because no elevated phosphorylation on Chk1 (Ser-317 and Ser-345) was observed after lithium treatment. Moreover, caffeine, a known ATM/ATR kinase inhibitor, relieved the phosphorylation of cdc2 (Tyr-15) by hydroxyurea, but not that by lithium. Our study's results revealed the role of Chk1 in lithium-induced G2/M arrest. Given that Chk1 has been proposed to be a novel tumor suppressor, we suggest that the effect of lithium on Chk1 and cell cycle is useful in tumor prevention and therapy.  相似文献   

8.
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) kinases regulate cell cycle checkpoints by phosphorylating multiple substrates including the CHK1 and -2 protein kinases and p53. Caffeine has been widely used to study ATM and ATR signaling because it inhibits these kinases in vitro and overcomes cell cycle checkpoint responses in vivo. Thus, caffeine has been thought to overcome the checkpoint through its ability to prevent phosphorylation of ATM and ATR substrates. Surprisingly, I have found that multiple ATM-ATR substrates including CHK1 and -2 are hyperphosphorylated in cells treated with caffeine and genotoxic agents such as hydroxyurea or ionizing radiation. ATM autophosphorylation in cells is also increased when caffeine is used in combination with inhibitors of replication suggesting that ATM activity is not inhibited in vivo by caffeine. Furthermore, CHK1 hyperphosphorylation induced by caffeine in combination with hydroxyurea is ATR-dependent suggesting that ATR activity is stimulated by caffeine. Finally, the G2/M checkpoint in response to ionizing radiation or hydroxyurea is abrogated by caffeine treatment without a corresponding decrease in ATM-ATR-dependent signaling. This data suggests that although caffeine is an inhibitor of ATM-ATR kinase activity in vitro, it can block checkpoints without inhibiting ATM-ATR activation in vivo.  相似文献   

9.
Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G1 phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G2 phase of the cycle for the first 4-6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G1 arrest. The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase, that however appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop, and not the activation of specific phosphatases. The inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling, and not a consequence of the G2 arrest as it can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and ATM/ATR kinase are known to play essential roles in the G2 checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G2 arrest. Additionally our results indicate that the transient G2 arrest is induced by FGF in RCS cell through mechanisms that are independent of the G1 arrest, and that the G2 block is not strictly required for the sustained G1 arrest but may provide a pausing mechanism that allows the FGF response to be fully established.  相似文献   

10.
DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway.  相似文献   

11.
DNA replication is tightly controlled to ensure accurate chromosome duplication and segregation in each cell cycle. Inactivation of Geminin, an inhibitor of origin licensing, leads to re-replication in human tumor cells within the same cell cycle and triggers a G(2)/M checkpoint. We find that the primary pathway to signal that re-replication has been detected is the ATR kinase and the Rad9-Rad1-Hus1 (9-1-1) clamp complex together with Rad17-RFC clamp loader. ATM kinase and the Mre11-Rad50-Nbs1 complex do not appear to play significant roles in the checkpoint. Chk1 activation occurs at early stages, whereas Chk2 activation occurs much later. Overall we conclude that ATR/Chk1 pathway is activated at an early time point after the loss of Geminin and contributes to checkpoint arrest essential for the accumulation of re-replicated cells, whereas activation of the ATM/Chk2 pathway is a by-product of DNA re-replication at a later period.  相似文献   

12.
DNA mismatch repair (MMR) deficiency in human cancers is associated with resistance to a spectrum of clinically active chemotherapy drugs, including 6-thioguanine (6-TG). We and others have shown that 6-TG-induced DNA mismatches result in a prolonged G2/M cell cycle arrest followed by apoptosis in MMR(+) human cancer cells, although the signaling pathways are not clearly understood. In this study, we found that prolonged (up to 4 days) treatment with 6-TG (3microM) resulted in a progressive phosphorylation of Chk1 and Chk2 in MMR(+) HeLa cells, correlating temporally with a drug-induced G2/M arrest. Transfection of HeLa cells with small interfering RNA (siRNA) against the ataxia telangiectasia-related (ATR) kinase or against the Chk1 kinase destroyed the G2/M checkpoint and enhanced the apoptosis following 6-TG treatment. On the other hand, the induction of a G2/M population by 6-TG was similar in ATM(-/-) and ATM(+) human fibroblasts, suggesting that the ATM-Chk2 pathway does not play a major role in this 6-TG response. Our results indicate that 6-TG DNA mismatches activate the ATR-Chk1 pathway in the MMR(+) cells, resulting in a G2/M checkpoint response  相似文献   

13.
14.
Several Epstein-Barr virus (EBV)-negative Burkitt lymphoma-derived cell lines (for example, BL41 and Ramos) are extremely sensitive to genotoxic drugs despite being functionally null for the tumor suppressor p53. They rapidly undergo apoptosis, largely from G(2)/M of the cell cycle. 5-bromo-2'-deoxyuridine labeling experiments showed that although the treated cells can pass through S phase, they are unable to complete cell division, suggesting that a G(2)/M checkpoint is activated. Surprisingly, latent infection of these genotoxin-sensitive cells with EBV protects them from both apoptosis and cell cycle arrest, allowing them to complete the division cycle. However, a comparison with EBV-immortalized B-lymphoblastoid cell lines (which have functional p53) showed that EBV does not block apoptosis per se but rather abrogates the activation of, or signalling from, the checkpoint in G(2)/M. Furthermore, analyses of BL41 and Ramos cells latently infected with P3HR1 mutant virus, which expresses only a subset of the latent viral genes, showed that LMP-1, the main antiapoptotic latent protein encoded by EBV, is not involved in the protection afforded here by viral infection. This conclusion was confirmed by analysis of clones of BL41 stably expressing LMP-1 from a transfected plasmid, which respond like the parental cell line. Although steady-state levels of Bcl-2 and related proteins varied between BL41 lines and clones, they did not change significantly during apoptosis, nor was the level of any of these anti- or proapoptotic proteins predictive of the outcome of treatment. We have demonstrated that a subset of EBV latent gene products can inactivate a cell cycle checkpoint for monitoring the fidelity and timing of cell division and therefore genomic integrity. This is likely to be important in EBV-associated growth transformation of B cells and perhaps tumorigenesis. Furthermore, this study suggests that EBV will be a unique tool for investigating the intimate relationship between cell cycle regulation and apoptosis.  相似文献   

15.
DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2 Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.  相似文献   

16.
Cell cycle checkpoints are among the multiple mechanisms that eukaryotic cells possess to maintain genomic integrity and minimize tumorigenesis. Ionizing irradiation (IR) induces measurable arrests in the G(1), S, and G(2) phases of the mammalian cell cycle, and the ATM (ataxia telangiectasia mutated) protein plays a role in initiating checkpoint pathways in all three of these cell cycle phases. However, cells lacking ATM function exhibit both a defective G(2) checkpoint and a prolonged G(2) arrest after IR, suggesting the existence of different types of G(2) arrest. Two molecularly distinct G(2)/M checkpoints were identified, and the critical importance of the choice of G(2)/M checkpoint assay was demonstrated. The first of these G(2)/M checkpoints occurs early after IR, is very transient, is ATM dependent and dose independent (between 1 and 10 Gy), and represents the failure of cells which had been in G(2) at the time of irradiation to progress into mitosis. Cell cycle assays that can distinguish mitotic cells from G(2) cells must be used to assess this arrest. In contrast, G(2)/M accumulation, typically assessed by propidium iodide staining, begins to be measurable only several hours after IR, is ATM independent, is dose dependent, and represents the accumulation of cells that had been in earlier phases of the cell cycle at the time of exposure to radiation. G(2)/M accumulation after IR is not affected by the early G(2)/M checkpoint and is enhanced in cells lacking the IR-induced S-phase checkpoint, such as those lacking Nbs1 or Brca1 function, because of a prolonged G(2) arrest of cells that had been in S phase at the time of irradiation. Finally, neither the S-phase checkpoint nor the G(2) checkpoints appear to affect survival following irradiation. Thus, two different G(2) arrest mechanisms are present in mammalian cells, and the type of cell cycle checkpoint assay to be used in experimental investigation must be thoughtfully selected.  相似文献   

17.
Hyperthermia induced by heat stress (HS) inhibits the proliferation of cancer cells and induces their apoptosis. However, the mechanism underlying HS-induced apoptosis remains elusive. Here, we demonstrated a novel evidence that checkpoint kinase 1 (Chk1) plays crucial roles in the apoptosis and regulation of cell cycle progression in cells under HS. In human leukemia Jurkat cells, interestingly, the ataxia telangiectasia and Rad-3 related (ATR)-Chk1 pathway was preferentially activated rather than the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) pathway under HS. The selective inhibitors of ATR or Chk1 abrogated HS-induced apoptosis in human leukemia Jurkat cells whereas the inhibition of ATM or Chk2 caused only marginal effects. Inhibition of ATR and Chk1 also abrogated G2/M checkpoint activation by HS in Jurkat cells. The effects of small interfering RNA targeting Chk1 were similar to those of the selective inhibitor of Chk1. In addition, the efficiencies of Chk1 inhibition on G2/M checkpoint abrogation and apoptosis induction were confirmed in the adherent cancer cell lines HeLa, HSC3, and PC3, suggesting that the targeting of Chk1 can be effective in solid tumors cells. In conclusion, these findings indicate a novel molecular basis of G2/M checkpoint activation and apoptosis in cells exposed to HS.  相似文献   

18.
ATM (ataxia telangiectasia-mutated) and ATR (ATM-Rad3-related) are proximal checkpoint kinases that regulate DNA damage response (DDR). Identification and characterization of ATM/ATR substrates hold the keys for the understanding of DDR. Few techniques are available to identify protein kinase substrates. Here, we screened for potential ATM/ATR substrates using phospho-specific antibodies against known ATM/ATR substrates. We identified proteins cross-reacting to phospho-specific antibodies in response to DNA damage by mass spectrometry. We validated a subset of the candidate substrates to be phosphorylated in an ATM/ATR-dependent manner in vivo. Combining with a functional checkpoint screen, we identified proteins that belong to the ubiquitin-proteasome system (UPS) to be required in mammalian DNA damage checkpoint control, particularly the G(1) cell cycle checkpoint, thus revealing protein ubiquitylation as an important regulatory mechanism downstream of ATM/ATR activation for checkpoint control.  相似文献   

19.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

20.
A critical function of cells is the maintenance of their genomic integrity. A family of phosphoinositide-3-kinase-related protein kinases, which includes ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR) kinases, play key roles in sensing DNA damage. ATM and ATR were demonstrated in the cleavage stages of mouse embryo development. Genotoxic stress was imposed by exposure to ultraviolet (UV) radiation (causes DNA strand breaks) or cisplatin (causes strand cross-links). UV irradiation or cisplatin treatment of 2-cell embryos in the G(2) phase of the cell cycle caused DNA damage as defined by increased phosphorylation of the H2A histone family, member X (H2AFX; previously H2AX) variant. UV irradiation caused a stable G(2)-M arrest, and cisplatin treatment allowed progression through mitosis followed by activation of a G(1)-S checkpoint. Both checkpoints were transformation-related protein 53-independent. Caffeine (inhibits both ATM and ATR), but not KU55933 (ATM-selective inhibitor), reversed the G(2)-M block induced by UV, inferring a primary role for ATR in sensing this form of DNA damage. Caffeine and KU55933 were equally effective in reversing the cisplatin-induced G(1)-S block, implicating ATM as the primary sensing enzyme. Breaching of either checkpoint by treatment with caffeine or KU55933 allowed embryos to progress through several further cell cycles, yet none developed to blastocysts. The results show, to our knowledge for the first time, that the G(2)-M and G(1)-S cell-cycle checkpoints in the early embryo are differentially regulated by ATM and ATR in response to genotoxic stress and that they act as an initial point for containment of genomic damage. Under conditions of extensive or persistent DNA damage, the demise of the embryo is the ultimate method of protecting genomic integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号