首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the influence of eight nonleguminous grassland plant species belonging to two functional groups (grasses and forbs) on the composition of soil denitrifier communities in experimental microcosms over two consecutive years. Denitrifier community composition was analyzed by terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified nirK gene fragments coding for the copper-containing nitrite reductase. The impact of experimental factors (plant functional group, plant species, sampling time, and interactions between them) on the structure of soil denitrifier communities (i.e., T-RFLP patterns) was analyzed by canonical correspondence analysis. While the functional group of a plant did not affect nirK-type denitrifier communities, plant species identity did influence their composition. This effect changed with sampling time, indicating community changes due to seasonal conditions and a development of the plants in the microcosms. Differences in total soil nitrogen and carbon, soil pH, and root biomass were observed at the end of the experiment. However, statistical analysis revealed that the plants affected the nirK-type denitrifier community composition directly, e.g., through root exudates. Assignment of abundant T-RFs to cloned nirK sequences from the soil and subsequent phylogenetic analysis indicated a dominance of yet-unknown nirK genotypes and of genes related to nirK from denitrifiers of the order Rhizobiales. In conclusion, individual species of nonleguminous plants directly influenced the composition of denitrifier communities in soil, but environmental conditions had additional significant effects.  相似文献   

2.
Chen Z  Liu J  Wu M  Xie X  Wu J  Wei W 《Microbial ecology》2012,63(2):446-459
The impact of fertilization regimes on sequential denitrifying communities was investigated in a rice paddy field with 17 years continuous fertilization, located in Taoyuan Agro-ecosystem Research Station (110°72″ E, 28°52″ N), China. The diversity, community composition, and size of denitrifying genes of narG, qnorB, and nosZ were determined using molecular tools including terminal restriction fragment length polymorphism, quantitative polymerase chain reaction (qPCR), cloning, and sequencing analysis. Soil samples were collected from the plots with no fertilizer (NF), urea (UR), balanced mineral fertilizers (BM), and BM combined with rice straw (BMR). UR and BM caused marked increase in the community size of the denitrifying genes; however, BMR resulted in the highest abundance. The community size of narG was the most affected by the fertilization regimes, while qnorB was the least. Fertilization also induced some shifts in the composition of denitrifying genes, but the responses of different genes varied. However, fertilization regimes caused no significant changes to the diversity of the denitrifying genes. Potential denitrification activity (PDA) was significantly correlated with the abundance of narG and nosZ rather than qnorB, but there were no such correlations between PDA and the composition and diversity of denitrifying communities. Conclusively, long-term fertilization significantly affected denitrifying community size and composition, but not diversity. Among the sequential denitrifying genes, narG was the most, while qnorB was the least sensitive communities to fertilization regimes.  相似文献   

3.
Nitrite reductase (NiR) activity of the cell-free extract orthe soluble fraction prepared from cells of Alcaligenes sp.NC1B 11015 grown anaerobically in the presence of nitrate wasexamined by measuring the rate of nitrite disappearance withdithionitemethyl viologen (MV) as an electron donor. Freezingat — 20?C and subsequent thawing of the fraction resultedin 5-40 times increase of the specific activity of NiR. Fromthe experiments on the effect of freezing conditions on theactivation, the phase change of solvent water due to freezingis considered to play an important role in the activation. Thisactivation occurred with the preparation in the exponentialgrowth phase, but not that in the stationary growth phase. Clearly,the low-molecular-weight (< 12,000) component which was obtainedfrom the soluble fraction through a collodion bag participatedin the activation. The activated enzyme proved to be the dissimilatory NiR, becauseNO production from nitrite, one of the typical characteristicsof the dissimilatory NiR, was also activated when assayed withascorbate-tetramethyl-p-phenylene diamine (TMPD) as an electrondonor. Nevertheless, the reaction products of nitrite reductionwere identified as hydroxylamine and ammonia with dithionite-MV.The possible pathway of nitrite reduction with this electrondonor is discussed. (Received May 26, 1983; Accepted February 2, 1984)  相似文献   

4.
5.
6.
Chemical composition of soil organic carbon (SOC) is central to soil fertility. We hypothesize that change in SOC content resulting from various long-term fertilization strategies accompanies the shift in SOC chemical structure. This study examined the effect of fertilization strategies along with the time of fertilizer application on the SOC composition by 13C nuclear magnetic resonance (NMR) spectroscopy. The soils (Aquic Inceptisol) subjected to seven fertilizer treatments were collected in 1989, 1999 and 2009, representing 0, 10 and 20 years of fertilization, respectively. The seven fertilizer treatments were (1–3) balanced fertilization with application of nitrogen (N), phosphorus (P) and potassium (K) including organic compost (OM), half organic compost plus half chemical fertilizer (1/2OM), and pure chemical NPK fertilizer (NPK); (4–6) unbalanced chemical fertilization without application of one of the major elements including NP fertilizer (NP), PK fertilizer (PK), and NK fertilizer (NK); and (7) an unamended control (CK). The SOC content in the balanced fertilization treatments were 2.3–52.6% and 9.4–64.6% higher than in the unbalanced fertilization/CK treatments in 1999 and 2009, respectively, indicating significant differences in SOC content with time of fertilizer application between the two treatment groups. There was a significantly greater proportion of O-alkyl C and a lower proportion of aromatic C in the balanced fertilization than in unbalanced fertilization/CK treatments in 1999, but not in 2009, because their proportions in the former treatments approached the latter in 2009. Principal component analysis further showed that the C functional groups from various fertilization strategies tended to become compositionally similar with time. The results suggest that a shift in SOC chemical composition may be firstly dominated by fertilization strategies, followed by fertilization duration.  相似文献   

7.
8.
Impact of Fumigants on Soil Microbial Communities   总被引:11,自引:1,他引:11       下载免费PDF全文
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

9.
Soil contaminated with C5+, which contained benzene (45%, wt/wt), dicyclopentadiene (DCPD) plus cyclopentadiene (together 20%), toluene (6%), styrene (3%), xylenes (2%), naphthalene (2%), and smaller quantities of other compounds, served as the source for isolation of 55 genomically distinct bacteria (standards). Use of benzene as a substrate by these bacteria was most widespread (31 of 44 standards tested), followed by toluene (23 of 44), xylenes (14 of 44), styrene (10 of 44), and naphthalene (10 of 44). Master filters containing denatured genomic DNAs of all 55 standards were used to analyze the community compositions of C5+ enrichment cultures by reverse sample genome probing (RSGP). The communities enriched from three contaminated soils were similar to those enriched from three uncontaminated soils from the same site. The compositions of these communities were time dependent and showed a succession of Pseudomonas and Rhodococcus spp. before convergence on a composition dominated by Alcaligenes spp. The dominant community members detected by RSGP were capable of benzene degradation at all stages of succession. The enrichments effectively degraded all C5+ components except DCPD. Overall, degradation of individual C5+ hydrocarbons followed first-order kinetics, with the highest rates of removal for benzene.  相似文献   

10.
Nitrifier denitrification is the conversion of nitrite to nitrous oxide by ammonia-oxidizing organisms. This process, which is distinct from denitrification, is active under aerobic conditions in the model nitrifier Nitrosomonas europaea. The central enzyme of the nitrifier dentrification pathway is a copper nitrite reductase (CuNIR). To understand how a CuNIR, typically inactivated by oxygen, functions in this pathway, the enzyme isolated directly from N. europaea (NeNIR) was biochemically and structurally characterized. NeNIR reduces nitrite at a similar rate to other CuNIRs but appears to be oxygen tolerant. Crystal structures of oxidized and reduced NeNIR reveal a substrate channel to the active site that is much more restricted than channels in typical CuNIRs. In addition, there is a second fully hydrated channel leading to the active site that likely acts a water exit pathway. The structure is minimally affected by changes in pH. Taken together, these findings provide insight into the molecular basis for NeNIR oxygen tolerance.  相似文献   

11.
The abundance of nifH, nirS, and nirK gene fragments involved in nitrogen (N) fixation and denitrification in thinned second-growth Douglas-fir (Pseudotsuga menziesii subsp. menziesii [Mirb.] Franco) forest soil was investigated by using quantitative real-time PCR. Prokaryotic N cycling is an important aspect of N availability in forest soil. The abundance of universal nifH, Azotobacter sp.-specific nifH (nifH-g1), nirS, and nirK gene fragments in unthinned control and 30, 90, and 100% thinning treatments were compared at two long-term research sites on Vancouver Island, Canada. The soil was analyzed for organic matter (OM), total carbon (C), total N, NH4-N, NO3-N, and phosphorus (P). The soil horizon accounted for the greatest variation in nutrient status, followed by the site location. The 30% thinning treatment was associated with significantly greater nifH-g1 abundance than the control treatment in one site; at the same site, nirS in the mineral soil horizon was significantly reduced by thinning. The abundance of nirS genes significantly correlated with the abundance of nirK genes. In addition, significant correlations were observed between nifH-g1 abundance and C and N in the organic horizon and between nirS and nirK and N in the mineral horizon. Overall, no clear influence of tree thinning on nifH, nirS, and nirK was observed. However, soil OM, C, and N were found to significantly influence N-cycling gene abundance.Nitrogen (N) is a limiting nutrient in most Douglas-fir (Pseudotsuga menziesii subsp. menziesii [Mirb.] Franco) forest ecosystems. Understanding the links between forest management and forest ecosystem function, including the cycling of N, is of paramount importance to researchers and forest managers. Management practices such as thinning and clear-cutting can alter the soil microbial community, potentially altering the rate and amount of net N addition or loss to the forest floor. Clear-cutting alters the functional diversity of soil microorganisms and alters soil characteristics (temperature, pH, moisture, and nutrient status). Thinning and clear-cutting can increase nitrification, denitrification, and leaching of N in soil, all of which can reduce the available N (2, 13, 22, 41, 47). Clear-cutting in Douglas-fir forests can also remove associated gene pools of diazotrophic microorganisms (46). It is not yet well understood how clear-cutting or thinning affects the abundance of N-cycling microorganisms. We focus on two populations of N-cycling microorganisms: diazotrophs, which biologically fix N2 gas to ammonia, and denitrifiers, which reduce N oxides and result in the release of N-containing gasses.Fixation of N by diazotrophic microorganisms is the primary source of N addition to undisturbed, unfertilized forest soil ecosystems (9, 39). The diazotrophic community is most often studied in situ using the marker gene for nitrogenase reductase (nifH); the diversity and abundance of diazotrophic microorganisms as determined by nifH characterization may be used as an indicator of overall soil ecological health. Diazotrophs can be symbiotic, associated (e.g., with a specific plant or fungal biomass), or free-living in the soil. Endophytic diazotrophs fix ∼100 times more N than free-living strains (9). Free-living diazotrophs such as Azotobacter vinelandii and A. chroococcum may fix between 0 and 60 kg of N ha−1 year−1 (9) and, because of a relative dearth of endophytic interactions in coniferous forests, free-living diazotrophs can be an important source of N in these soils. Cultural studies have shown that free-living diazotrophs improve the establishment of mycorrhizae and conifer seedlings, with relative activity fluctuating according to season, site aspect, and moisture conditions (11). Fixed-N inputs act as a catalyst for interlinked N-cycling events, e.g., fungal decomposition of woody debris and organic material (28). Nitrogen fixation in temperate forest soil is directly related to the amounts of soil organic matter (17). However, it is unclear how nifH gene abundance relates to the amount of total carbon (C) and organic matter (OM) and N in forest soil. It is also unknown how common silvicultural practices (e.g., clear-cutting and thinning) affect diazotrophic abundance or how diazotrophic abundance may in turn affect cycling of soil nutrients.The reduction of inorganic N oxides by denitrifying microorganisms can cause N loss from forest soil ecosystems, as well as the release of greenhouse gases into the atmosphere. The loss of N from temperate forest soil as N2O has been reported as ranging from 0.2 to 7.0 kg ha−1 year−1, depending largely on soil nitrogen status, soil moisture, and temperature (57). Robertson and Tiedje (44) state that soil N loss in coniferous ecosystems due to denitrification is regulated by nitrification potential (e.g., nitrate levels) in the soil, and while not considered a major N loss component following clear-cutting, this loss is generally of the same magnitude as the N loss due to leaching. Denitrification is primarily studied using molecular approaches by monitoring several genes in the denitrification pathway: cytochrome cd1-containing nitrite reductase (nirS), Cu-containing nitrite reductase (nirK), nitrous oxide reductase (nosZ), and membrane-bound nitrate reductase A (narG). The nirS and nirK genes were the denitrification genes used in the present study. Studies demonstrating (i) that the nirS gene is more diverse than nirK in soil and (ii) the domination of the nirK population by a relatively reduced number of clones have been published (42, 45). However, recent meta-analysis of studies involving nirK and nirS has shown that both communities tend to be phylogenetically clustered in undisturbed soils (23).To compare the effects of silvicultural practices on the abundance of diazotrophs and denitrifiers, we used quantitative real-time PCR (qPCR) assays to quantify nifH, nirS, and nirK genes in soil. This method can be used to quantify target sequences in environmental samples. Several qPCR protocols for the analysis of functional gene abundance in soil have been developed for N-cycling genes, including nifH, ammonia monooxygenase (amoA), nirK, nirS, nosZ, and narG (21, 24, 31, 38, 43, 54, 55). The objectives of the present study were (i) to quantify nifH, nirS, and nirK; (ii) to compare the effects of thinning and clear-cutting in Douglas-fir stands on the abundance of total diazotrophs, free-living diazotrophs, and denitrifiers; and (iii) to elucidate the relationships between N-cycling genes and nutrient abundance in forest soils.  相似文献   

12.
The objective of this study was to explore the long-term effects of different organic and inorganic fertilizers on activity and composition of the denitrifying and total bacterial communities in arable soil. Soil from the following six treatments was analyzed in an experimental field site established in 1956: cattle manure, sewage sludge, Ca(NO3)2, (NH4)2SO4, and unfertilized and unfertilized bare fallow. All plots but the fallow were planted with corn. The activity was measured in terms of potential denitrification rate and basal soil respiration. The nosZ and narG genes were used as functional markers of the denitrifying community, and the composition was analyzed using denaturing gradient gel electrophoresis of nosZ and restriction fragment length polymorphism of narG, together with cloning and sequencing. A fingerprint of the total bacterial community was assessed by ribosomal intergenic spacer region analysis (RISA). The potential denitrification rates were higher in plots treated with organic fertilizer than in those with only mineral fertilizer. The basal soil respiration rates were positively correlated to soil carbon content, and the highest rates were found in the plots with the addition of sewage sludge. Fingerprints of the nosZ and narG genes, as well as the RISA, showed significant differences in the corresponding communities in the plots treated with (NH4)2SO4 and sewage sludge, which exhibited the lowest pH. In contrast, similar patterns were observed among the other four treatments, unfertilized plots with and without crops and the plots treated with Ca(NO3)2 or with manure. This study shows that the addition of different fertilizers affects both the activity and the composition of the denitrifying communities in arable soil on a long-term basis. However, the treatments in which the denitrifying and bacterial community composition differed the most did not correspond to treatments with the most different activities, showing that potential activity was uncoupled to community composition.  相似文献   

13.
The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of complex interactions in soils for bioremediation applications.  相似文献   

14.
While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.  相似文献   

15.
The herbicide chlorate has been used extensively to isolate mutants that are defective in nitrate reduction. Chlorate is a substrate for the enzyme nitrate reductase (NR), which reduces chlorate to the toxic chlorite. Because NR is a substrate (NO3)-inducible enzyme, we investigated the possibility that chlorate may also act as an inducer. Irrigation of ammonia-grown Arabidopsis plants with chlorate leads to an increase in NR mRNA in the leaves. No such increase was observed for nitrite reductase mRNA following chlorate treatment; thus, the effect seems to be specific to NR. The increase in NR mRNA did not depend on the presence of wild-type levels of NR activity or molybdenum-cofactor, as a molybdenum-cofactor mutant with low levels of NR activity displayed the same increase in NR mRNA following chlorate treatment. Even though NR mRNA levels were found to increase after chlorate treatment, no increase in NR protein was detected and the level of NR activity dropped. The lack of increase in NR protein was not due to inactivation of the cells' translational machinery, as pulse labeling experiments demonstrated that total protein synthesis was unaffected by the chlorate treatment during the time course of the experiment. Chlorate-treated plants still retain the capacity to make functional NR because NR activity could be restored by irrigating the chlorate-treated plants with nitrate. The low levels of NR protein and activity may be due to inactivation of NR by chlorite, leading to rapid degradation of the enzyme. Thus, chlorate treatment stimulates NR gene expression in Arabidopsis that is manifested only at the mRNA level and not at the protein or activity level.  相似文献   

16.
The role of NO3 and NO2 in the induction of nitrite reductase (NiR) activity in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was investigated. Barley leaves contained 6 to 8 micromoles NO2/gram fresh weight × hour of endogenous NiR activity when grown in N-free solutions. Supply of both NO2 and NO3 induced the enzyme activity above the endogenous levels (5 and 10 times, respectively at 10 millimolar NO2 and NO3 over a 24 hour period). In NO3-supplied leaves, NiR induction occurred at an ambient NO3 concentration of as low as 0.05 millimolar; however, no NiR induction was found in leaves supplied with NO2 until the ambient NO2 concentration was 0.5 millimolar. Nitrate accumulated in NO2-fed leaves. The amount of NO3 accumulating in NO2-fed leaves induced similar levels of NiR as did equivalent amounts of NO3 accumulating in NO3-fed leaves. Induction of NiR in NO2-fed leaves was not seen until NO3 was detectable (30 nanomoles/gram fresh weight) in the leaves. The internal concentrations of NO3, irrespective of N source, were highly correlated with the levels of NiR induced. When the reduction of NO3 to NO2 was inhibited by WO42−, the induction of NiR was inhibited only partially. The results indicate that in barley leaves NiR is induced by NO3 directly, i.e. without being reduced to NO2, and that absorbed NO2 induces the enzyme activity indirectly after being oxidized to NO3 within the leaf.  相似文献   

17.
18.
19.
There is growing interest in understanding the linkages between above- and belowground communities, and very little is known about these linkages in tropical systems. Using an experimental site at La Selva Biological Station, Costa Rica, we examined whether plant diversity, plant community composition, and season influenced microbial communities. We also determined whether soil characteristics were related to differences in microbial communities. Phospholipid fatty acid (PLFA) composition revealed that microbial community composition differed across a plant diversity gradient (plots contained 1, 3, 5, or over 25 species). Plant species identity also was a factor influencing microbial community composition; PLFA composition significantly varied among monocultures, and among three-species combinations that differed in plant species composition. Differences among treatments within each of these comparisons were apparent in all four sampling dates of the study. There was no consistent shift in microbial community composition between wet and dry seasons, although we did see significant changes over time. Of all measured soil characteristics, soil C/N was most often associated with changes in microbial community composition across treatment groups. Our findings provide evidence for human alteration of soil microbial communities via the alteration of plant community composition and diversity and that such changes are mediated in part by changes in soil carbon quality.  相似文献   

20.
Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号