首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions – such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake “three-finger” topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique adaptation may establish new paradigms for how receptor:ligand pairs co-evolve, in particular with respect to sexual conflict.  相似文献   

3.
Populations of human cytomegalovirus (HCMV), a large DNA virus, are highly polymorphic in patient samples, which may allow for rapid evolution within human hosts. To understand HCMV evolution, longitudinally sampled genomic populations from the urine and plasma of 5 infants with symptomatic congenital HCMV infection were analyzed. Temporal and compartmental variability of viral populations were quantified using high throughput sequencing and population genetics approaches. HCMV populations were generally stable over time, with ∼88% of SNPs displaying similar frequencies. However, samples collected from plasma and urine of the same patient at the same time were highly differentiated with approximately 1700 consensus sequence SNPs (1.2% of the genome) identified between compartments. This inter-compartment differentiation was comparable to the differentiation observed in unrelated hosts. Models of demography (i.e., changes in population size and structure) and positive selection were evaluated to explain the observed patterns of variation. Evidence for strong bottlenecks (>90% reduction in viral population size) was consistent among all patients. From the timing of the bottlenecks, we conclude that fetal infection occurred between 13–18 weeks gestational age in patients analyzed, while colonization of the urine compartment followed roughly 2 months later. The timing of these bottlenecks is consistent with the clinical histories of congenital HCMV infections. We next inferred that positive selection plays a small but measurable role in viral evolution within a single compartment. However, positive selection appears to be a strong and pervasive driver of evolution associated with compartmentalization, affecting ≥34 of the 167 open reading frames (∼20%) of the genome. This work offers the most detailed map of HCMV in vivo evolution to date and provides evidence that viral populations can be stable or rapidly differentiate, depending on host environment. The application of population genetic methods to these data provides clinically useful information, such as the timing of infection and compartment colonization.  相似文献   

4.
CD4, an integral membrane glycoprotein, plays a critical role in the immune response and in the life cycle of simian and human immunodeficiency virus (SIV and HIV). Pairwise comparisons of orthologous human and mouse genes show that CD4 is evolving much faster than the majority of mammalian genes. The acceleration is too great to be attributed to a simple relaxation of the action of purifying selection alone. Here we show that the selective pressure acting on CD4 is highly variable between regions in the protein and identify codon sites under strong positive selection. We reconstruct the coding sequences for ancestral primate CD4s and model tertiary structures of all ancestral and extant sequences. Structural mapping of positively selected sites shows they distribute on the surface of the D1 domain of CD4, where the exogenous SIV gp120 protein binds. Moreover, structural models of the ancestral sequences show substantially larger variation in the interfacial electrostatic charge on CD4 and in the surface complementary between CD4 and gp120 in CD4 lineages from primates with natural SIV infections than those without. Thus, positive selection on CD4 among primates may reflect forces driven by SIV infection and could provide a link between changes in sequence and structure of CD4 during evolution and the interaction with the immunodeficiency virus.  相似文献   

5.
Most organisms use multiple cues across many modalities to assess potential mates. Salamanders in the genus Plethodon have an elaborate courtship display, yet previous studies primarily have concentrated on the influence of olfactory cues on courtship success. In this study, we tested whether two different cues (one chemical and one visual) affected courtship success and duration in the red‐legged salamander, Plethodon shermani. By staging and observing over 180 courtship trials, we found that ‘foot‐dancing’, a male visual cue performed in the earliest stages of courtship, significantly increased the likelihood that a male and female would progress to subsequent stages of courtship and, thus, the likelihood of insemination. In contrast, delivery of biologically relevant levels of a non‐volatile pheromone (produced in a large gland on the male's chin) during courtship trials did not increase overall insemination rate success, but did significantly reduce the duration of one of the later stages of courtship, tail‐straddling walk. Thus, we propose that early use of visual cues in Plethodon courtship, may (1) increase the detectability of the male message by increasing the range at which the male can be perceived by the female and (2) indicate the context of the male's approach and subsequent behaviors. In short, this study draws attention to the need to examine behavioral traits affecting courtship success at multiple stages and across several sensory modalities.  相似文献   

6.
Complete catalogs of courtship behavior are available for only seven of the 42 currently recognized species of Plethodon. Additional detailed studies of courtship behavior in Plethodon species are needed to analyze the evolution of courtship behavior in this genus. We investigated the courtship behavior of the Cumberland Plateau woodland salamander (Plethodon kentucki) and compared it to previous accounts of courtship in other Plethodon species. In the laboratory, we videotaped the complete courtship of 30 different P. kentucki pairs, which included 46 tail-straddling walks that resulted in spermatophore deposition. From a transition matrix of observed motor patterns, we constructed a flow diagram of significant motor-pattern transitions during courtship. In general, the courtship behavior of this species is very similar to that of other large eastern Plethodon; however, there are some notable differences. Prior to the tail-straddling walk, the male transfers courtship pheromone from his mental gland to the female's nasolabial grooves (via mental-gland tapping and ‘chin-to-chin’ behavior patterns) more frequently than in other Plethodon. In most courtships, the female initiates contact leading to the tail-straddling walk. Males exhibit a greater propensity to deposit multiple spermatophores per courtship (two deposited in 33% of courtships, three deposited in 10% of courtships, X = 1.53 spermatophores per courtship) than males of other plethodontids. Mean size of the spermatophore is smaller than in other large eastern Plethodon. Overall, the courtship behavior of this species is most similar to that of P. jordani.  相似文献   

7.
Cetaceans represent an evolutionary lineage marked by drastic morphological and physiological changes during their adaptation to an exclusively marine existence. In addition, several cetacean species exhibit geographical ranges that encompass different marine environments, with genetic breaks being sometimes consistent with environmental breaks. As such, genes that underwent adaptation during the land-sea transition can also be potential candidates for adaptation to different oceanic environments. In this study, we analysed 3 milk protein genes (β-casein, κ-casein, and α-lactalbumin) and 2 immunity related genes (MHC DQβ1 and γ-fibrinogen) for selection based on available phylogenetic datasets of both mammals and cetaceans, and used the results from this analysis to assess adaptation to different environments on a population level in the European common dolphin (Delphinus delphis). We found that evidence for positive selection could be detected in all genes in the phylogenetic analyses, with β-casein showing a further increase in selective pressure in the cetacean lineage. At the population level, both the immune system locus DQβ1 and β-casein genes showed patterns of variation consistent with divergent selection, and in each case the same populations showed differentiation. One of these populations was also differentiated at neutral markers, while the other was not. We discuss possible inference, and the potential for the further development of these ideas using genomic technologies.  相似文献   

8.
9.
Hepatitis C virus subtype 3a is a highly prevalent and globally distributed strain that is often associated with infection via injection drug use. This subtype exhibits particular phenotypic characteristics. In spite of this, detailed genetic analysis of this subtype has rarely been performed. We performed full-length viral sequence analysis in 18 patients with chronic HCV subtype 3a infection and assessed genomic viral variability in comparison to other HCV subtypes. Two novel regions of intragenotypic hypervariability within the envelope protein E2, of HCV genotype 3a, were identified. We named these regions HVR495 and HVR575. They consisted of flanking conserved hydrophobic amino acids and central variable residues. A 5-amino-acid insertion found only in genotype 3a and a putative glycosylation site is contained within HVR575. Evolutionary analysis of E2 showed that positively selected sites within genotype 3a infection were largely restricted to HVR1, HVR495, and HVR575. Further analysis of clonal viral populations within single hosts showed that viral variation within HVR495 and HVR575 were subject to intrahost positive selecting forces. Longitudinal analysis of four patients with acute HCV subtype 3a infection sampled at multiple time points showed that positively selected mutations within HVR495 and HVR575 arose early during primary infection. HVR495 and HVR575 were not present in HCV subtypes 1a, 1b, 2a, or 6a. Some variability that was not subject to positive selection was present in subtype 4a HVR575. Further defining the functional significance of these regions may have important implications for genotype 3a E2 virus-receptor interactions and for vaccine studies that aim to induce cross-reactive anti-E2 antibodies.Hepatitis C virus (HCV) infection is a major global health issue leading to persistent viral infection in the majority of those infected and is associated with progressive liver disease, cirrhosis, and hepatocellular carcinoma. Six major genotypes of HCV have been described that have evolved in geographically distinct regions and that share approximately. 80% nucleotide homology with one another. HCV viral genotypes have been further classified into subtypes (25). HCV subtype 3a infection is now the most common subtype in the United Kingdom (11), although it is globally distributed and frequently associated with intravenous drug use.The classification of HCV viral strains by genotype and subtype has proven informative not only in terms of the epidemic and evolutionary history of the virus but also in terms of clinical outcomes. In particular, the response rates to current gold standard therapy (9) and the prevalence of hepatic steatosis (20) are significantly higher for subtype 3a than for genotype 1 infections. The reasons for this are not understood but must relate to viral genetic and phenotypic differences between strains, or to differences in the ability of hosts to exert an effective immune response against particular viral sequences, or to a combination of both factors.To date, detailed assessment of the HCV genome has largely focused on HCV genotype 1. Indeed, only a few full-length HCV subtype 3a viral sequences are currently published and available within the major HCV databases (Los Alamos; http://hcv.lanl.gov/components/hcv-db/combined_search/searchi.html and euHCVdb; http://euhcvdb.ibcp.fr/euHCVdb/) (16).To characterize HCV subtype 3a in detail, we performed whole-genome analysis of a cohort of patients with persistent HCV subtype 3a infection. We subsequently focus on the highly variable regions observed in the envelope protein E2 in both acute and chronic infection, since it was apparent that these regions were not restricted to the well-documented hypervariable region 1 (HVR1) that is found at the 5′ end of E2 in all HCV genotypes.Viral genomic variability can be assessed at a number of different levels; first, intergenotypic variability may arise in genomic regions that are conserved within the same subtype but are distinct between subtypes. Second, there is intragenotypic variability, which may be defined as regions of viral variability within the same genotype or subtype. Finally, intrahost variability is where viral genomic variability occurs within the same viral subtype and also the same host when individual clonal sequences are assessed. Although intergenotypic variability may simply be a feature of the existence of geographically distinct HCV subtypes, intragenotypic and intrahost variability may reflect viral regions subject to specific selection pressures, with important functional implications.We observed two distinct regions of intrahost and intragenotypic hypervariability within genotype 3a envelope 2 (E2)—in addition to the previously described HVR1—that we have named HVR495 and HVR575. We show that these regions are subject to positive selection pressure, sometimes very early in acute infection. Although HVR575 has been previously recognized as a site of intergenotypic variation (18), the identification of this region as a hypervariable site within genotype 3a and as a site under early selection pressure leading to variability within the same host has not been previously described.  相似文献   

10.
Satellite RNAs usually lack substantial homology with their helper viruses. The 356-nucleotide satC of Turnip crinkle virus (TCV) is unusual in that its 3′-half shares high sequence similarity with the TCV 3′ end. Computer modeling, structure probing, and/or compensatory mutagenesis identified four hairpins and three pseudoknots in this TCV region that participate in replication and/or translation. Two hairpins and two pseudoknots have been confirmed as important for satC replication. One portion of the related 3′ end of satC that remains poorly characterized corresponds to juxtaposed TCV hairpins H4a and H4b and pseudoknot ψ3, which are required for the TCV-specific requirement of translation (V. A. Stupina et al., RNA 14:2379-2393, 2008). Replacement of satC H4a with randomized sequence and scoring for fitness in plants by in vivo genetic selection (SELEX) resulted in winning sequences that contain an H4a-like stem-loop, which can have additional upstream sequence composing a portion of the stem. SELEX of the combined H4a and H4b region in satC generated three distinct groups of winning sequences. One group models into two stem-loops similar to H4a and H4b of TCV. However, the selected sequences in the other two groups model into single hairpins. Evolution of these single-hairpin SELEX winners in plants resulted in satC that can accumulate to wild-type (wt) levels in protoplasts but remain less fit in planta when competed against wt satC. These data indicate that two highly distinct RNA conformations in the H4a and H4b region can mediate satC fitness in protoplasts.  相似文献   

11.
We use first principles of population genetics to model the evolution of proteins under persistent positive selection (PPS). PPS may occur when organisms are subjected to persistent environmental change, during adaptive radiations, or in host–pathogen interactions. Our mutation–selection model indicates protein evolution under PPS is an irreversible Markov process, and thus proteins under PPS show a strongly asymmetrical distribution of selection coefficients among amino acid substitutions. Our model shows the criteria ω>1 (where ω is the ratio of nonsynonymous over synonymous codon substitution rates) to detect positive selection is conservative and indeed arbitrary, because in real proteins many mutations are highly deleterious and are removed by selection even at positively selected sites. We use a penalized-likelihood implementation of the PPS model to successfully detect PPS in plant RuBisCO and influenza HA proteins. By directly estimating selection coefficients at protein sites, our inference procedure bypasses the need for using ω as a surrogate measure of selection and improves our ability to detect molecular adaptation in proteins.  相似文献   

12.
13.
Although plant resistance (R) genes are extremely diverse and evolve rapidly, little is known about the mechanisms that generate this sequence divergence. To investigate these forces, we compared all nucleotide binding sites and leucine-rich repeat R-genes between two closely related species, Arabidopsis thaliana and Arabidopsis lyrata. Our analyses revealed two distinct evolutionary patterns driven by either positive or stabilizing selection. Most R-genes (>50%) were evolving under strong positive selection characterized by high Ka/Ks ratios (>1), frequent recombination, copy number variation, and extremely high sequence divergence between the two species. The stably selected R-genes (<30%) have exactly the opposite four characters as the positively selected genes. The remaining R-genes (about 20%) are present in only one genome and absent from the other. A higher proportion of such genes were found to be part of TNL class (23.5%) compared to the non-TNL class (5.6%), suggesting different evolutionary patterns between these two groups. A significant correlation between Ka and divergence was revealed, indicating that the rapid evolution and diversification of R-genes were initiated by selectively generated, frequently shuffled and selectively maintained non-synonymous substitutions. Our genome-wide analyses confirmed an amazing mechanism by which plants to selectively accumulate and efficiently exploit these non-synonymous substitutions for their resistance to various pathogens.  相似文献   

14.
15.
16.
The strength and direction of selection on the identity of an amino acid residue in a protein is typically measured by the ratio of the rate of non-synonymous substitutions to the rate of synonymous substitutions. In attempting to predict positively selected sites from amino acid alignments, we made the unexpected observation that the site likelihood of an alignment column for a given tree tends to be negatively correlated with the posterior probability that site is in the positive selection class under widely-used codon models. This is likely because positively selected sites tend to be more variable and display more “radical” amino acid changes; both of these features are expected to result in low site log-likelihoods. We explored the efficacy of using the site log-likelihood (SLL) score as a predictor for positive selection. Through simulation we show that a SLL-based test has a low false positive rate and comparable power as the codon models. In one case where the simulated data violated the assumption that synonymous substitution rates were constant across the sites, the codon models were not able to detect positive selection in the data while the SLL test did. We applied the new method to ten empirical datasets and found that it made similar predictions as the codon models in eight of them. For the tax gene dataset the SLL test seemed to produce more reasonable results. The SLL methods are a valuable complement to codon models, especially for some cases where the assumptions of codon models are likely violated.  相似文献   

17.
18.
Understanding the selective constraints of partner specificity in mutually beneficial symbiosis is a significant, yet largely unexplored, prospect of evolutionary biology. These selective constraints can be explored through the study of nucleotide polymorphism at loci controlling specificity. The membrane-anchored receptor NORK (nodulation receptor kinase) of the legume Medicago truncatula controls early steps of root infection by two symbiotic microorganisms: nitrogen-fixing bacteria (rhizobia) and endomycorrhizal fungi (Glomales). We analyzed the diversity of the gene NORK by sequencing 4 kilobases in 28 inbred lines sampled from natural populations. We detected 33 polymorphic sites with only one nonsynonymous change. Analysis based on Tajima’s D and Fay and Wu’s H summary statistics revealed no departure from the neutral model. We analyzed divergence using sequences from the closely related species M. coerulea. The McDonald-Kreitman test indicated a significant excess of nonsynonymous changes contributing to this divergence. Furthermore, maximum-likelihood analysis of a molecular phylogeny of a few legume species indicated that a number of amino acid sites, likely located in the receptor domain of the protein, evolved under the regime of positive selection. Further research should focus on the rate and direction of molecular coevolution between microorganisms’ signaling molecules and legumes’ receptors. [Reviewing Editor: Dr. Deborah Charlesworth] Sequence data were deposited in the GenBank database under accession nos. AY676428 to AY676457 and AJ884582.  相似文献   

19.
20.
RNASEL is a 2-5A-dependent endoribonuclease that is a component of the interferon-induced 2-5A system, which plays a crucial role in the antiviral and apoptotic activities of interferons. In humans, many polymorphic sites within the RNASEL gene have been associated with an increased risk of developing prostate cancer. Here, we obtained coding sequences for the RNASEL gene from 11 primates and found evidence that positive selection has operated on the C-terminal endoribonuclease domain and the N-terminal ankyrin repeats domain of the protein, domains that directly interact with virus (i.e., ankyrin repeats are responsible for receiving environmental signals, and the endoribonuclease catalyses the destruction of the pathogenic viral RNA). To extend this finding, we studied variation within this gene in modern human populations by resequencing alleles from 144 individuals representing four separate populations. Interestingly, the frequency of the 541D allele shows a negative association with the incidence rate of prostate cancer in worldwide populations, and haplotypes containing the 541D polymorphisms demonstrate signatures of positive selection. RNASEL variants having the 541D haplotype likely have a greater ability to defend against infections by viruses, thus the loss of this activity may be associated with the development of prostate cancer. We provide evidence that positive selection has operated on the RNASEL gene, and its evolution is correlated with its function in pathogen defense and cancer association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号