首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carcinoembryonic Ag (CEA) is an attractive target for immunotherapy because of its expression profile and role in tumor progression. To verify the existence of spontaneous anti-CEA CD4+ T cells in lung cancer patients, we first identified CEA sequences forming naturally processed epitopes, and then used the identified epitopes to test their recognition by CD4+ T cells from the patients. We had previously identified CEA(177-189/355-367) as an immunodominant epitope recognized by CD4+ T cells in association with several HLA-DR alleles. In this study, we identified four additional subdominant CEA sequences (CEA(99-111), CEA(425-437), CEA(568-582), and CEA(666-678)), recognized in association with one or more HLA-DR alleles. Peptide-specific CD4+ T cells produced proinflammatory cytokines when challenged with the native protein and CEA-expressing tumor cells, thus demonstrating that the identified CEA sequences contain naturally processed epitopes. However, CEA is expressed in the thymus and belongs to the CD66 family that comprises highly homologous molecules expressed on hemopoietic cells, raising concerns about tolerance interfering with the in vivo development of anti-CEA immunity. We thus tested the spontaneous reactivity to the identified epitopes of peripheral blood CD4+ T lymphocytes from eight early-stage lung cancer patients bearing CEA-positive tumors. We found GM-CSF- and IFN-gamma-producing CD4+ T cells in two patients. Our data indicate that CD4+ immune responses against CEA develop in neoplastic patients, suggesting that tolerance toward CEA or cross-reactive CD66 homologous molecules might be either not absolute or be overcome in the neoplastic disease.  相似文献   

2.
Cyclin D1 is over-expressed in various human tumors and therefore can be a potential oncogenic target antigen. However, only a limited number of T cell epitopes has been characterized. We aimed at identifying human cyclin D1-derived peptides that include both CD4 and CD8 T cell epitopes and to test if such multi-epitope peptides could yield improved cytotoxic CD8 T cell responses as well as cytotoxic CD4 T cells. Five HLA-DR.B1-binding peptides containing multiple overlapping CD4 epitopes and HLA-A0201-restricted CD8 T cell epitopes were predicted by computer algorithms. Immunogenicity of the synthetic peptides was assessed by stimulating T cells from healthy donors in vitro and the epitope recognition was measured by IFN-γ ELISPOT and 51Chromium release assays. A HLA-DR.B1 peptide, designed “DR-1”, in which a HLA-A0201-binding epitopes (D1-1) was imbedded, induced CD3 T cell responses against both DR-1 and D1-1 peptides in IFN-γ ELISPOT assay. This suggested processing of the shorter D1-1 epitope from the DR-1 sequence. However, only DR-1-stimulated CD4 or CD3 T cells possessed cytotoxicity against peptide-pulsed autologous DCs and a cancer cell line, that expresses a high level of cyclin D1. Monoclonal antibody to HLA-DR abrogated the epitope-specific responses of both CD3 and CD4 T cells, demonstrating class II-mediated killing. Our studies suggest a possible role of CD4 T cells in anti-tumor immunity as cytotoxic effectors against HLA-DR expressing cancers and provide a rationale for designing peptide vaccines that include CD4 epitopes.  相似文献   

3.
Recent studies increasingly point to a pivotal role of CD4(+) T cells in human anti-tumor immune response. Here we show that lymphocytes purified from a tumor-infiltrated lymph node of a melanoma patient that had remained disease free for 10 years after surgical resection of a lymph node metastasis comprised oligoclonal class II HLA-restricted CD4(+) T cells recognizing the autologous tumor cells in vitro. In fact, the CD4(+) T cell clones isolated from these lymphocytes displayed a tumor-specific, cytotoxic activity in addition to a Th1-like cytokine profile. By a genetic approach, a peptide derived from a mutated receptor-like protein tyrosine phosphatase kappa was identified as a novel HLA-DR10-restricted epitope for all the melanoma-specific CD4(+) T cell clones. The immunogenic peptide was shown to contain the mutated residue that was crucial for T cell recognition and activation. Moreover, a systemic immunity against the mutated peptide was detectable in the patient's peripheral blood T lymphocytes obtained during the disease-free period of follow-up. These findings further support the relevance of CD4(+) T cells directed against mutated epitopes in tumor immunity and provide the rationale for a possible usage of mutated, tumor-specific Ags for immunotherapy of human cancer.  相似文献   

4.
Purpose The carcinoembryonic antigen (CEA) is extensively expressed on the vast majority of colorectal, gastric, and pancreatic carcinomas, and, therefore, is a good target for tumor immunotherapy. CD4+ T-helper (Th) cells play a critical role in initiation, regulation, and maintenance of immune responses. In this study, we sought to identify Th epitopes derived from CEA which can induce CEA-specific Th responses. The combined application with cytotoxic T lymphocyte (CTL) epitopes would be more potent than tumor vaccines that primarily activate CTL alone.Methods We utilized a combined approach of using a computer-based algorithm analysis TEPITOPE and in vitro biological analysis to identify Th epitopes in CEA.Results Initial screening of healthy donors showed that all five predicted peptides derived from CEA could induce peptide-specific T-cell proliferation in vitro. We characterized these CEA epitopes by establishing and analyzing peptide-specific T-cell clones. It was shown that CD4+ T-cells specific for the CEA116 epitope can recognize and respond to naturally processed CEA protein and CEA116 epitope can be promiscuously presented by commonly found major histocompatibility complex (MHC) alleles. Furthermore, it was demonstrated that immunization of human leukocyte antigen (HLA)-DR4 transgenic mice with CEA116 peptide elicited antigen-specific Th responses which can recognize the antigenic peptides derived from CEA protein and CEA-positive tumors.Conclusion The MHC class II-restricted epitope CEA116 could be used in the design of peptide-based tumor vaccine against several common cancers expressing CEA.  相似文献   

5.
NY-ESO-1 is frequently expressed in epithelial ovarian cancer (EOC) and elicits spontaneous humoral and cellular immune responses in a proportion of EOC patients. The identification of NY-ESO-1 peptide epitopes with dual HLA-class I and class II specificities might be useful in vaccination strategies for generating cognate CD4+ T cell help to augment CD8+ T cell responses. Here, we describe two novel NY-ESO-1-derived MHC class I epitopes from EOC patients with spontaneous humoral immune response to NY-ESO-1. CD8+ T cells derived from NY-ESO-1 seropositive EOC patients were presensitized with a recombinant adenovirus encoding NY-ESO-1or pooled overlapping peptides. These epitopes, ESO127-136 presented by HLA-A68 molecule, and ESO127-135 restricted by HLA-Cw15 allele, are located within ESO119-143, a promiscuous HLA-class II region containing epitopes that bind to multiple HLA-DR alleles. The novel epitopes were naturally processed by APC or naturally presented by tumor cell lines. In addition, these epitopes induced NY-ESO-1-specific CTL in NY-ESO-1 seropositive EOC patients. Together, the results indicate that ESO119-143 epitope has dual HLA classes I and II specificities, and represents a potential vaccine candidate in a large number of cancer patients.  相似文献   

6.
Posttranslational modifications regulate the function and stability of proteins, and the immune system is able to recognize some of these modifications. Therefore, the presence of posttranslational modifications increases the diversity of potential immune responses to a determinant antigen. The stimulation of tumor-specific CD4+ helper T lymphocytes (HTLs) is considered important for the production of anti-tumor antibodies by B cells and for the generation and persistence of CD8+ cytotoxic T lymphocytes, and in some instances, HTLs can directly reduce tumor cell growth. Identification of MHC class II-restricted peptide epitopes from tumor-associated antigens including those generated from posttranslational protein modifications should enable the improvement of peptide-based cancer immunotherapy. We describe here an MHC class II binding peptide from the tumor protein p53, which possesses an acetylated lysine at position 120 (p53110-124/AcK120) that is effective in eliciting CD4+ T cell responses specific for the acetylated peptide. Most importantly, the acetylated peptide-reactive CD4 HTLs recognized the corresponding naturally processed posttranslational modified epitope presented by either dendritic cells loaded with tumor cell lysates or directly on tumors expressing p53 and the restricting MHC class II molecules. Treatment of tumor cells with a histone deacetylase inhibitor augmented their recognition by the p53110-124/AcK120-reactive CD4+ T cells. These findings prove that the epitope p53110-124/AcK120 is immunogenic for anti-tumor responses and is likely to be useful for cancer immunotherapy.  相似文献   

7.
While most immunotherapies for cancer have focused on eliciting specific CD8+ cytotoxic T lymphocyte killing of tumor cells, a mounting body of evidence suggests that stimulation of anti-tumor CD4+ T cell help may be required for highly effective therapy. Several MHC class II-restricted tumor antigens that specifically activate such CD4+ helper T lymphocytes have now been identified, including one from a melanoma tumor that is caused by a single base-pair mutation in the glycolytic enzyme triosephosphate isomerase. This mutation results in the conversion of a threonine residue to isoleucine within the antigenic epitope, concomitant with a greater than five log-fold increase in stimulation of a CD4+ tumor-infiltrating lymphocyte line. Here, we present the crystal structures of HLA-DR1 in complex with both wild-type and mutant TPI peptide antigens, the first structures of tumor peptide antigen/MHC class II complexes recognized by CD4+ T cells to be reported. These structures show that very minor changes in the binding surface for T cell receptor correspond to the dramatic differences in T cell stimulation. Defining the structural basis by which CD4+ T cell help is invoked in an anti-tumor immune response will likely aid the design of more effective cancer immunotherapies.  相似文献   

8.
Immunization with tumor antigens induces cellular and humoral immune responses. These responses by T cells are specific for defined epitopes (determinants) in the molecule of the immunizing tumor antigen. Extension of such responses to self-antigens requires induction of autoimmunity to the tumor. As with systems of autoimmune disease, expression of T cell autoimmunity is charaterized by diversification of responses from the inducer determinant to other responder (cryptic) determinants. Since similar strategies may be useful for therapy of human cancers, we investigated whether the induction of response to a HER-2 peptide F7 (776–789) induces enhanced reactivity of other HER-2 peptides. We found that stimulation with F7 can expand a response to another epitope F13 (884–899) in both an ovarian cancer patient with progressive disease and a healthy donor who shared HLA-DR11. This response was characterized mainly by increased interferon γ secretion, and proliferation, but was not observed with another donor who shared HLA-DR14 and HLA-DQ5 with the patient. Since repeated vaccination with the same epitope may lead to a decline of primary cell reactivity caused by apoptosis spreading the response to other epitopes, the tumor antigen may provide an approach for maintaining an inflammatory Th1 response during cancer vaccination. Received: 10 April 2000 / Accepted: 12 July 2000  相似文献   

9.
The development of effective anti-cancer vaccines requires precise assessment of vaccine-induced immunity. This is often hampered by low ex vivo frequencies of antigen-specific T cells and limited defined epitopes. This study investigates the applicability of modified, in vitro-transcribed mRNA encoding a therapeutically relevant tumour antigen to analyse T cell responses in cancer patients. In this study transfection of antigen presenting cells, by mRNA encoding the tumour antigen NY-ESO-1, was optimised and applied to address spontaneous and vaccine-induced T cell responses in cancer patients. Memory CD8+ T cells from lung cancer patients having detectable humoral immune responses directed towards NY-ESO-1 could be efficiently detected in peripheral blood. Specific T cells utilised a range of different T cell receptors, indicating a polyclonal response. Specific killing of a panel of NY-ESO-1 expressing tumour cell lines indicates recognition restricted to several HLA allelic variants, including a novel HLA-B49 epitope. Using a modified mRNA construct targeting the translated antigen to the secretory pathway, detection of NY-ESO-1-specific CD4+ T cells in patients could be enhanced, which allowed the in-depth characterisation of established T cell clones. Moreover, broad CD8+ and CD4+ T cell responses covering multiple epitopes were detected following mRNA stimulation of patients treated with a recombinant vaccinia/fowlpox NY-ESO-1 vaccine. This approach allows for a precise monitoring of responses to tumour antigens in a setting that addresses the breadth and magnitude of antigen-specific T cell responses, and that is not limited to a particular combination of known epitopes and HLA-restrictions.  相似文献   

10.
BACKGROUND: Vaccines capable of inducing CD8 T cell responses to antigens expressed by tumor cells are considered as attractive choices for the treatment and prevention of malignant diseases. Our group has previously reported that immunization with synthetic peptide corresponding to a CD8 T cell epitope derived from the rat neu (rNEU) oncogene administered together with a Toll-like receptor agonist as adjuvant, induced immune responses that translated into prophylactic and therapeutic benefit against autochthonous tumors in an animal model of breast cancer (BALB-neuT mice). DNA-based vaccines offer some advantages over peptide vaccines, such as the possibility of including multiple CD8 T cell epitopes in a single construct. MATERIALS AND METHODS: Plasmids encoding a fragment of rNEU were designed to elicit CD8 T cell responses but no antibody responses. We evaluated the use of the modified plasmids as DNA vaccines for their ability to generate effective CD8 T cell responses against breast tumors expressing rNEU. RESULTS: DNA-based vaccines using modified plasmids were very effective in specifically stimulating tumor-reactive CD8 T cell responses. Moreover, vaccination with the modified DNA plasmids resulted in significant anti-tumor effects that were mediated by CD8 T cells without the requirement of generating antibodies to the product of rNEU. CONCLUSIONS: DNA vaccination is a viable alternative to peptide vaccination to induce potent anti-tumor CD8 T cell responses that provide effective therapeutic benefit. These results bear importance for the design of DNA vaccines for the treatment and prevention of cancer.  相似文献   

11.
Pancreatic carcinoma is a very aggressive disease with dismal prognosis. Although evidences for tumor-specific T cell immunity exist, factors related to tumor microenvironment and the presence of immunosuppressive cytokines in patients' sera have been related to its aggressive behavior. Carcinoembryonic Ag (CEA) is overexpressed in 80-90% of pancreatic carcinomas and contains epitopes recognized by CD4(+) T cells. The aim of this study was to evaluate the extent of cancer-immune surveillance and immune suppression in pancreatic carcinoma patients by comparing the anti-CEA and antiviral CD4(+) T cell immunity. CD4(+) T cells from 23 normal donors and 44 patients undergoing surgical resection were tested for recognition of peptides corresponding to CEA and viral naturally processed promiscuous epitopes by proliferation and cytokine release assays. Anti-CEA CD4(+) T cell immunity was present in a significantly higher number of normal donors than pancreatic cancer patients. Importantly, whereas CD4(+) T cells from normal donors produced mainly GM-CSF and IFN-gamma, CD4(+) T cells from the patients produced mainly IL-5, demonstrating a skew toward a Th2 type. On the contrary, the extent of antiviral CD4(+) T cell immunity was comparable between the two groups and showed a Th1 type. The immunohistochemical analysis of tumor-infiltrating lymphocytes showed a significantly higher number of GATA-3(+) compared with T-bet(+) lymphoid cells, supporting a Th2 skew also at the tumor site. Collectively, these results demonstrate that Th2-immune deviation in pancreatic cancer is not generalized but tumor related and suggests that the skew might be possibly due to factor(s) present at the tumor site.  相似文献   

12.
The use of “altered peptide ligands” (APL), epitopes designed for exerting increased immunogenicity as compared with native determinants, represents nowadays one of the most utilized strategies for overcoming immune tolerance to self-antigens and boosting anti-tumor T cell-mediated immune responses. However, the actual ability of APL-primed T cells to cross-recognize natural epitopes expressed by tumor cells remains a crucial concern. In the present study, we show that CAP1-6D, a superagonist analogue of a carcinoembriyonic antigen (CEA)-derived HLA-A*0201-restricted epitope widely used in clinical setting, reproducibly promotes the generation of low-affinity CD8+ T cells lacking the ability to recognized CEA-expressing colorectal carcinoma (CRC) cells. Short-term T cell cultures, obtained by priming peripheral blood mononuclear cells from HLA-A*0201+ healthy donors or CRC patients with CAP1-6D, were indeed found to heterogeneously cross-react with saturating concentrations of the native peptide CAP1, but to fail constantly lysing or recognizing through IFN- γ release CEA+CRC cells. Characterization of anti-CAP1-6D T cell avidity, gained through peptide titration, CD8-dependency assay, and staining with mutated tetramers (D227K/T228A), revealed that anti-CAP1-6D T cells exerted a differential interaction with the two CEA epitopes, i.e., displaying high affinity/CD8-independency toward the APL and low affinity/CD8-dependency toward the native CAP1 peptide. Our data demonstrate that the efficient detection of self-antigen expressed by tumors could be a feature of high avidity CD8-independent T cells, and underline the need for extensive analysis of tumor cross-recognition prior to any clinical usage of APL as anti-cancer vaccines.  相似文献   

13.
Despite the importance of vaccinia virus in basic and applied immunology, our knowledge of the human immune response directed against this virus is very limited. CD4(+) T cell responses are an important component of immunity induced by current vaccinia-based vaccines, and likely will be required for new subunit vaccine approaches, but to date vaccinia-specific CD4(+) T cell responses have been poorly characterized, and CD4(+) T cell epitopes have been reported only recently. Classical approaches used to identify T cell epitopes are not practical for large genomes like vaccinia. We developed and validated a highly efficient computational approach that combines prediction of class II MHC-peptide binding activity with prediction of antigen processing and presentation. Using this approach and screening only 36 peptides, we identified 25 epitopes recognized by T cells from vaccinia-immune individuals. Although the predictions were made for HLA-DR1, eight of the peptides were recognized by donors of multiple haplotypes. T cell responses were observed in samples of peripheral blood obtained many years after primary vaccination, and were amplified after booster immunization. Peptides recognized by multiple donors are highly conserved across the poxvirus family, including variola, the causative agent of smallpox, and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response elicited to vaccinia virus. Moreover, the epitope identification approach developed here should find application to other large-genome pathogens.  相似文献   

14.
During adaptive immune response, pathogen-specific CD8(+) T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8(+) T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8(+) T cells of H-2(a) infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8(+) T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8(+) T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development.  相似文献   

15.
Overexpression of the proto-oncogene c-Myb occurs in more than 80% of colorectal cancer (CRC) and is associated with aggressive disease and poor prognosis. To test c-Myb as a therapeutic target in CRC we devised a DNA fusion vaccine to generate an anti-CRC immune response. c-Myb, like many tumor antigens, is weakly immunogenic as it is a "self" antigen and subject to tolerance. To break tolerance, a DNA fusion vaccine was generated comprising wild-type c-Myb cDNA flanked by two potent Th epitopes derived from tetanus toxin. Vaccination was performed targeting a highly aggressive, weakly immunogenic, subcutaneous, syngeneic, colon adenocarcinoma cell line MC38 which highly expresses c-Myb. Prophylactic intravenous vaccination significantly suppressed tumor growth, through the induction of anti-tumor immunity for which the tetanus epitopes were essential. Vaccination generated anti-tumor immunity mediated by both CD4(+) and CD8(+) T cells and increased infiltration of immune effector cells at the tumor site. Importantly, no evidence of autoimmune pathology in endogenous c-Myb expressing tissues was detected as a consequence of breaking tolerance. In summary, these results establish c-Myb as a potential antigen for immune targeting in CRC and serve to provide proof of principle for the continuing development of DNA vaccines targeting c-Myb to bring this approach to the clinic.  相似文献   

16.
The product of Wilms‘ tumor gene 1 (WT1) is overexpressed in diverse human tumors, including leukemia, lung and breast cancer, and is often recognized by antibodies in the sera of patients with leukemia. Since WT1 encodes MHC class I-restricted peptides recognized by cytotoxic T lymphocytes (CTL), WT1 has been considered as a promising tumor-associated antigen (TAA) for developing anticancer immunotherapy. In order to carry out an effective peptide-based cancer immunotherapy, MHC class II-restricted epitope peptides that elicit anti-tumor CD4+ helper T lymphocytes (HTL) will be needed. In this study, we analyzed HTL responses against WT1 antigen using HTL lines elicited by in vitro immunization of human lymphocytes with synthetic peptides predicted to serve as HTL epitopes derived from the sequence of WT1. Two peptides, WT1124–138 and WT1247–261, were shown to induce peptide-specific HTL, which were restricted by frequently expressed HLA class II alleles. Here, we also demonstrate that both peptides-reactive HTL lines were capable of recognizing naturally processed antigens presented by dendritic cells pulsed with tumor lysates or directly by WT1+ tumor cells that express MHC class II molecules. Interestingly, the two WT1 HTL epitopes described here are closely situated to known MHC class I-restricted CTL epitopes, raising the possibility of stimulating CTL and HTL responses using a relatively small synthetic peptide vaccine. Because HTL responses to TAA are known to be important for promoting long-lasting anti-tumor CTL responses, the newly described WT1 T-helper epitopes could provide a useful tool for designing powerful vaccines against WT1-expressing tumors.  相似文献   

17.
恒定自然杀伤T细胞(iNKT)是T淋巴细胞的一个独特亚群,兼具自然杀伤(NK)细胞和T细胞特征,同时表达T细胞受体(TCR)和NK细胞表面标志。iNKT细胞被激活后,通过分泌细胞因子,活化其它免疫细胞参与先天性免疫和获得性免疫,在抗肿瘤免疫过程中发挥调节作用。在多种癌症患者体内,发现外周血中iNKT细胞的数量降低、功能减弱,进而导致临床治疗效果不佳。近年来,基础研究和早期临床试验结果表明,注射抗原递呈细胞或/和体外培养并活化的iNKT细胞,抗肿瘤免疫治疗效果显著。本文就iNKT细胞的分类及生物学特性,在肿瘤免疫治疗中的作用与其机制,以及其临床应用等进行综述。  相似文献   

18.
Helper T lymphocytes that control CD8(+) T-cell and antibody responses are key elements for the resolution of infection by the hepatitis B virus and for the development of effective immunological memory after hepatitis B vaccination. We have used H-2 class II-deficient mice that express the human MHC class II molecule, HLA-DR1, to identify novel hepatitis B virus envelope-derived T helper epitopes. We confirmed the immunogenicity of a previously described HLA-DR1-restricted epitope, and identified three novel epitopes. CD4(+) T-cell immune responses against these epitopes were detected in peripheral blood mononuclear cells from HLA-DR1(+) individuals vaccinated against hepatitis B. We showed that subjects receiving the currently available hepatitis B vaccines do not develop cross-reactive T helper responses against one of the novel epitopes which are structurally variable between different hepatitis B virus subtypes. These findings highlight the need for developing vaccines against a wider range of viral subtypes, and establish humanized mice as a convenient tool for identifying new immunogenic epitopes from pathogens.  相似文献   

19.
Background and Objective Immune escape by tumors can occur by multiple mechanisms, each a significant barrier to immunotherapy. We previously demonstrated that upregulation of the immunosuppressive molecule CD200 on chronic lymphocytic leukemia cells inhibits Th1 cytokine production required for an effective cytotoxic T cell response. CD200 expression on human tumor cells in animal models prevents human lymphocytes from rejecting the tumor; treatment with an antagonistic anti-CD200 antibody restored lymphocyte-mediated tumor growth inhibition. The current study evaluated CD200 expression on solid cancers, and its effect on immune response in vitro. Methods and Results CD200 protein was expressed on the surface of 5/8 ovarian cancer, 2/4 melanoma, 2/2 neuroblastoma and 2/3 renal carcinoma cell lines tested, but CD200 was absent on prostate, lung, breast, astrocytoma, or glioblastoma cell lines. Evaluation of patient samples by immunohistochemistry showed strong, membrane-associated CD200 staining on malignant cells of melanoma (4/4), ovarian cancer (3/3) and clear cell renal cell carcinoma (ccRCC) (2/3), but also on normal ovary and kidney. CD200 expression on melanoma metastases was determined by RT-QPCR, and was found to be significantly higher in jejunum metastases (2/2) and lung metastases (2/6) than in normal samples. Addition of CD200-expressing, but not CD200-negative solid tumor cell lines to mixed lymphocyte reactions downregulated the production of Th1 cytokines. Inclusion of antagonistic anti-CD200 antibody restored Th1 cytokine responses. Conclusion These data suggest that melanoma, ccRCC and ovarian tumor cells can express CD200, thereby potentially suppressing anti-tumor immune responses. CD200 blockade with an antagonistic antibody may permit an effective anti-tumor immune response in these solid tumor types.  相似文献   

20.
Subdominant CD8(+) T-cell responses contribute to control of several viral infections and to vaccine-induced immunity. Here, using the lymphocytic choriomeningitis virus model, we demonstrate that subdominant epitopes can be more reliably identified by DNA immunization than by other methods, permitting the identification, in the virus nucleoprotein, of two overlapping subdominant epitopes: one presented by L(d) and the other presented by K(d). This subdominant sequence confers immunity as effective as that induced by the dominant epitope, against which >90% of the antiviral CD8(+) T cells are normally directed. We compare the kinetics of the dominant and subdominant responses after vaccination with those following subsequent viral infection. The dominant CD8(+) response expands more rapidly than the subdominant responses, but after virus infection is cleared, mice which had been immunized with the "dominant" vaccine have a pool of memory T cells focused almost entirely upon the dominant epitope. In contrast, after virus infection, mice which had been immunized with the "subdominant" vaccine retain both dominant and subdominant memory cells. During the acute phase of the immune response, the acquisition of cytokine responsiveness by subdominant CD8(+) T cells precedes their development of lytic activity. Furthermore, in both dominant and subdominant populations, lytic activity declines more rapidly than cytokine responsiveness. Thus, the lysis(low)-cytokine(competent) phenotype associated with most memory CD8(+) T cells appears to develop soon after antigen clearance. Finally, lytic activity differs among CD8(+) T-cell populations with different epitope specificities, suggesting that vaccines can be designed to selectively induce CD8(+) T cells with distinct functional attributes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号