首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
The biosynthetic pathway of polyunsaturated fatty acids (PUFAs) has been the subject of much interest over the last few years. Significant progress has been made in the identification of the enzymes required for PUFA synthesis; in particular, the fatty acid desaturases which are central to this pathway have now all been identified. These "front-end" desaturases are all members of the cytochrome b(5) fusion desaturase superfamily, since they contain an N-terminal domain that is orthologous to the microsomal cytochrome b(5). Examination of the primary sequence relationships between the various PUFA-specific cytochrome b(5) fusion desaturases and related fusion enzymes allows inferences regarding the evolution of this important enzyme class. More importantly, this knowledge helps underpin our understanding of polyunsaturated fatty acid biosynthesis.  相似文献   

3.
ω-3 fatty acid desaturase is a key enzyme for the biosynthesis of ω-3 polyunsaturated fatty acids via the oxidative desaturase/elongase pathways. Here we report the identification of three ω-3 desaturases from oomycetes, Pythium aphanidermatum, Phytophthora sojae, and Phytophthora ramorum. These new ω-3 desaturases share 55 % identity at the amino acid level with the known Δ-17 desaturase of Saprolegnia diclina, and about 31 % identity with the bifunctional Δ-12/Δ-15 desaturase of Fusarium monoliforme. The three enzymes were expressed in either wild-type or codon optimized form in an engineered arachidonic acid producing strain of Yarrowia lipolytica to study their activity and substrate specificity. All three were able to convert the ω-6 arachidonic acid to the ω-3 eicosapentanoic acid, with a substrate conversion efficiency of 54–65 %. These enzymes have a broad ω-6 fatty acid substrate spectrum, including both C18 and C20 ω-6 fatty acids although they prefer the C20 substrates, and have strong Δ-17 desaturase activity but weaker Δ-15 desaturase activity. Thus, they belong to the Δ-17 desaturase class. Unlike the previously identified bifunctional Δ-12/Δ-15 desaturase from F. monoliforme, they lack Δ-12 desaturase activity. The newly identified Δ-17 desaturases could use fatty acids in both acyl-CoA and phospholipid fraction as substrates. The identification of these Δ-17 desaturases provides a set of powerful new tools for genetic engineering of microbes and plants to produce ω-3 fatty acids, such as eicosapentanoic acid and docosahexanoic acid, at high levels.  相似文献   

4.
Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n  9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans.  相似文献   

5.
The role of acyl‐CoA‐dependent Δ6‐desaturation in the heterologous synthesis of omega‐3 long‐chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl‐CoA Δ6‐desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6‐desaturated acyl‐CoAs, in contrast to the phospholipid‐dependent Δ6‐desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl‐CoA Δ6‐desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid‐dependent Δ6‐desaturase. The use of acyl‐CoA‐dependent Δ6‐desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ‐linolenic acid in total seed lipids. Expression of acyl‐CoA Δ6‐desaturases resulted in increased distribution of long‐chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6‐desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6‐desaturated fatty acids. This study provides evidence for the efficacy of using acyl‐CoA‐dependent Δ6‐desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega‐3 LC‐PUFAs.  相似文献   

6.
Since Saccharomyces cerevisiae contains Δ9 fatty acid desaturase (OLE1) as a sole fatty acid desaturase, it produces saturated and monounsaturated fatty acids of 16- and 18-carbon compounds. We showed earlier that Kluyveromyces lactis Δ12 (KlFAD2) and ω3 (KlFAD3) fatty acid desaturase genes enabled S. cerevisiae to make also polyunsaturated fatty acids (PUFAs), linoleic (18:2n-6), and α-linolenic (18:3n-3) acids. Unlike Δ9 fatty acid desaturase Ole1p, the two added fatty acid desaturases (KlFAD2and KlFAD3) do not contain a cytochrome b5 domain, and we now report on effects of the overexpression of K. lactis and S. cerevisiae cytochrome b5 (CYB5) genes as well as temperature effects on PUFA synthesis. Without extra cytochrome b5, while PUFA synthesis is significant at low temperature (20 °C), it was marginal at 30 °C. Overexpression of cytochrome b5 at 20 °C did not affect the fatty acid synthesis so much, but it significantly enhanced the synthesis of PUFA at 30 °C.  相似文献   

7.
Very-long-chain polyunsaturated fatty acids such as arachidonic, eicosapentaenoic, and docosahexaenoic acids, are important to the physiology of many microorganisms and metazoans and are vital to human development and health. The production of these and related fatty acids depends on Δ6 desaturases, the final components of an electron transfer chain that introduces double bonds into 18-carbon fatty acid chains. When a Δ6 desaturase identified from the ciliated protist Tetrahymena thermophila was expressed in Saccharomyces cerevisiae cultures supplemented with the 18:2Δ9,12 substrate, only 4% of the incorporated substrate was desaturated. Cytochrome b5 protein sequences identified from the genome of T. thermophila included one sequence with two conserved cytochrome b5 domains. Desaturation by the Δ6 enzyme increased as much as 10-fold when T. thermophila cytochrome b5s were coexpressed with the desaturase. Coexpression of a cytochrome b5 from Arabidopsis thaliana with the Δ6 enzyme also increased desaturation. A split ubiquitin growth assay indicated that the strength of interaction between cytochrome b5 proteins and the desaturase plays a vital role in fatty acid desaturase activity, illustrating the importance of protein-protein interactions in this enzyme activity.  相似文献   

8.
The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.  相似文献   

9.
Fatty acid desaturases play an important role in maintaining the appropriate structure and function of biological membranes. The biochemical characterization of integral membrane desaturases, particularly ω3 and ω6 desaturases, has been limited by technical difficulties relating to the acquisition of large quantities of purified proteins, and by the fact that functional activities of these proteins were only tested in an NADH-initiated reaction system. The main aim of this study was to reconstitute an NADPH-dependent reaction system in vitro and investigate the kinetic properties of Mortierella alpina ω3 and ω6 desaturases in this system. After expression and purification of the soluble catalytic domain of NADPH–cytochrome P450 reductase, the NADPH-dependent fatty acid desaturation was reconstituted for the first time in a system containing NADPH, NADPH–cytochrome P450 reductase, cytochrome b5, M. alpina ω3 and ω6 desaturase and detergent. In this system, the maximum activity of ω3 and ω6 desaturase was 213.4 ± 9.0 nmol min−1 mg−1 and 10.0 ± 0.5 nmol min−1 mg−1, respectively. The highest kcat/Km value of ω3 and ω6 desaturase was 0.41 µM−1 min−1 and 0.09 µM−1 min−1 when using linoleoyl CoA (18:2 ω6) and oleoyl CoA (18:1 ω9) as substrates, respectively. M. alpina ω3 and ω6 desaturases were capable of using NADPH as reductant when mediated by NADPH–cytochrome P450 reductase; although, their efficiency is distinguishable from NADH-dependent desaturation. These results provide insights into the mechanisms underlying ω3 and ω6 fatty acid desaturation and may facilitate the production of important fatty acids in M. alpina.  相似文献   

10.
Unlike most other plant microsomal desaturases, the Delta6-fatty acid desaturase from borage (Borago officinalis) contains an N-terminal extension that shows homology to the small hemoprotein cytochrome (Cyt) b5. To determine if this domain serves as a functional electron donor for the Delta6-fatty acid desaturase, mutagenesis and functional analysis by expression in transgenic Arabidopsis was carried out. Although expression of the wild-type borage Delta6-fatty acid desaturase resulted in the synthesis and accumulation of Delta6-unsaturated fatty acids, this was not observed in plants transformed with N-terminally deleted forms of the desaturase. Site-directed mutagenesis was used to disrupt one of the axial heme-binding residues (histidine-41) of the Cyt b5 domain; expression of this mutant form of the Delta6-desaturase in transgenic plants failed to produce Delta6-unsaturated fatty acids. These data indicate that the Cyt b5 domain of the borage Delta6-fatty acid desaturase is essential for enzymatic activity.  相似文献   

11.
Phytophthora infestans is the causative agent of potato blight that resulted in the great famine in Ireland in the nineteenth century. This microbe can release large amounts of the C20 very long-chain polyunsaturated fatty acids arachidonic acid (ARA; 20:4Δ5, 8, 11, 14) and eicosapentaenoic acid (EPA; 20:5Δ5, 8, 11, 14, 17) upon invasion that is known to elicit a hypersensitive response to their host plant. In order to identify enzymes responsible for the biosynthesis of these fatty acids, we blasted the recently fully sequenced P. infestans genome and identified three novel putatively encoding desaturase sequences. These were subsequently functionally characterized by expression in Saccharomyces cerevisiae and confirmed that they encode desaturases with Δ12, Δ6 and Δ5 activity, designated here as PinDes12, PinDes6 and PinDes5, respectively. This, together with the combined fatty acid profiles and a previously identified Δ6 elongase activity, implies that the ARA and EPA are biosynthesized predominantly via the Δ6 desaturation pathways in P. infestans. Elucidation of ARA and EPA biosynthetic mechanism may provide new routes to combating this potato blight microbe directly or by means of conferring resistance to important crops.  相似文献   

12.
At low temperatures, Bacillus cereus synthesizes large amounts of unsaturated fatty acids (UFAs) with double bonds in positions Δ5 and Δ10, as well as Δ5,10 diunsaturated fatty acids. Through sequence homology searches, we identified two open reading frames (ORFs) encoding a putative Δ5 desaturase and a fatty acid acyl-lipid desaturase in the B. cereus ATCC 14579 genome, and these were named BC2983 and BC0400, respectively. Functional characterization of ORFs BC2983 and BC0400 by means of heterologous expression in Bacillus subtilis confirmed that they both encode acyl-lipid desaturases that use phospholipids as the substrates and have Δ5 and Δ10 desaturase activities. Thus, these ORFs were correspondingly named desA (Δ5 desaturase) and desB (Δ10 desaturase). We established that DesA utilizes ferredoxin and flavodoxins (Flds) as electron donors for the desaturation reaction, while DesB preferably employs Flds. In addition, increased amounts of UFAs were found when B. subtilis expressing B. cereus desaturases was subjected to a cold shock treatment, indicating that the activity or the expression of these enzymes is upregulated in response to a decrease in growth temperature. This represents the first work reporting the functional characterization of fatty acid desaturases from B. cereus.  相似文献   

13.
An open reading frame with fatty acid desaturase similarity was identified in the genome of Trypanosoma brucei. The 1224 bp sequence specifies a protein of 408 amino acids with 59% and 58% similarity to Mortierella alpina and Arabidopsis thaliana Delta12 desaturase, respectively, and 51% with A. thaliana omega3 desaturases. The histidine tracks that compose the iron-binding active centers of the enzyme were more similar to those of the omega3 desaturases. Expression of the trypanosome gene in Saccharomyces cerevisiae resulted in the production of fatty acids that are normally not synthesized in yeast, namely linoleic acid (18:2Delta9,12) and hexadecadienoic acid (16:2Delta9,12), the levels of which were dependent on the culture temperature. At low temperature, the production of bi-unsaturated fatty acids and the 16:2/18:2 ratio were higher. Transformed yeast cultures supplemented with 19:1Delta10 fatty acid yielded 19:2Delta10,13, indicating that the enzyme is able to introduce a double bond at three carbon atoms from a pre-existent olefinic bond. The expression of the gene in a S. cerevisiae mutant defective in cytochrome b5 showed a significant reduction in bi-unsaturated fatty acid production, although it was not totally abolished. Based on the regioselectivity and substrate preferences, we characterized the trypanosome enzyme as a cytochrome b5-dependent oleate desaturase. Expression of the ORF in a double mutant (ole1Delta,cytb5Delta) abolished all oleate desaturase activity completely. OLE1 codes for the endogenous stearoyl-CoA desaturase. Thus, Ole1p has, like Cytb5p, an additional cytochrome b5 function (actually an electron donor function), which is responsible for the activity detected when using the cytb5Delta single mutant.  相似文献   

14.
Due to increasing demand for natural sources of both polyunsaturated fatty acids (PUFAs) and beta-carotene, 28 Zygomycetes fungal soil isolates were screened for their potential to synthesize these biologically active compounds. Although all fungi produced C18 PUFAs, only nine strains also formed beta-carotene. Although Actinomucor elegans CCF 3218 was the best producer of gamma-linolenic acid (GLA) (251 mg/L), Umbelopsis isabellina CCF 2412 was found to be the most valuable fungus because of the dual production of GLA (217 mg/L) and beta-carotene (40.7 mg/L). The calculated ratio of formed PUFAs provided new insight into activities of individual fatty acid desaturases involved in biosynthetic pathways for various types of PUFAs. The maximal activity of delta-9 desaturase was accompanied by high accumulation of storage lipids in fungal cells. On the other hand, maximal activity of delta-15 desaturase was found in strains synthesizing low amounts of oleic acid due to diminished delta-9 desaturase. Activities of delta-6 desaturase showed competition for fatty acids engaged in n3, n6, and n9 biosynthetic pathways. Such knowledge about fatty acid desaturase activities provides new challenges for the regulation of biotechnological production of PUFAs by Zygomycetes fungi.  相似文献   

15.
Delta-9 desaturases, also known as stearoyl-CoA desaturases, are lipogenic enzymes responsible for the generation of vital components of membranes and energy storage molecules. We have identified a novel nuclear hormone receptor, NHR-80, that regulates delta-9 desaturase gene expression in Caenorhabditis elegans. Here we describe fatty acid compositions, lifespans, and gene expression studies of strains carrying mutations in nhr-80 and in the three genes encoding delta-9 desaturases, fat-5, fat-6, and fat-7. The delta-9 desaturase single mutants display only subtle changes in fatty acid composition and no other visible phenotypes, yet the fat-5;fat-6;fat-7 triple mutant is lethal, revealing that endogenous production of monounsaturated fatty acids is essential for survival. In the absence of FAT-6 or FAT-7, the expression of the remaining desaturases increases, and this ability to compensate depends on NHR-80. We conclude that, like mammals, C. elegans requires adequate synthesis of unsaturated fatty acids and maintains complex regulation of the delta-9 desaturases to achieve optimal fatty acid composition.  相似文献   

16.
The electron donors for the membrane-bound fatty acid desaturases of higher plants have not previously been identified. In order to assess the participation of cytochrome b5 in microsomal fatty acid desaturation, the cytoplasmic domain of microsomal cytochrome b5 was purified from Brassica oleracea, and murine polyclonal antibodies were prepared. The IgG fraction from ascites fluid inhibited 62% of NADH-dependent cytochrome c reduction in safflower (Carthamus tinctorius L.) microsomes. These antibodies also blocked desaturation of oleic acid to linoleic acid in lipids of C. tinctorius microsomes by 93%, suggesting that cytochrome b5 is the electron donor for the delta 12 desaturase.  相似文献   

17.
Tetrahymena setosa has a nutritional requirement for micro amounts of sterol, a requirement which is also satisfied by relatively large amounts of either intact phospholipids or a mixture of unsaturated fatty acids normally found in these ciliates. Three microsomal fatty acyl-CoA desaturases have been isolated from T. setosa and partially characterized. These enzymes which can account for the formation of the majority of the ciliate's unsaturated fatty acids, include: a Δ9, a Δ12 and a Δ6 desaturase which catalyze the transformation of stearoyl-CoA to oleic acid, of oleoyl-CoA to linoleic acid and of linoleoyl-CoA to ?-linolenic acid, respectively. The stearoyl CoA desaturase required NAD (or NADP), ATP and free CoA; the Δ6 and Δ12 desaturases required NADP, but not ATP or CoA. Cellular levels of the three desaturases were highest in mid-logarithmic phase cells and lowest in stationary phase cells. In order to determine if there was a relationship between the sterol requirement and the ability of the organism to desaturate, T. setosa was grown in a synthetic medium supplemented with either cholesterol or a phospholipid which permits growth in the absence of cholesterol, or with both phospholipid and cholesterol. Cells grown with phospholipid alone had only half as much stearoyl-CoA and oleoyl-CoA desaturase activity as cells of identical culture age grown either on cholesterol alone or on cholesterol plus phospholipid.  相似文献   

18.
Monogalactosyldiacylglycerol (MGDG) in Chlamydomonas reinhardtii and other green algae contains hexadeca-4,7,10,13-tetraenoic acid (16:4) in the glycerol sn-2 position. While many genes necessary for the introduction of acyl chain double bonds have been functionally characterized, the Δ4-desaturase remained unknown. Using a phylogenetic comparison, a candidate gene encoding the MGDG-specific Δ4-desaturase from Chlamydomonas (CrΔ4FAD) was identified. CrΔ4FAD shows all characteristic features of a membrane-bound desaturase, including three histidine boxes and a transit peptide for chloroplast targeting. But it also has an N-terminal cytochrome b(5) domain, distinguishing it from other known plastid desaturases. Cytochrome b(5) is the primary electron donor for endoplasmic reticulum (ER) desaturases and is often fused to the desaturase domain in desaturases modifying the carboxyl end of the acyl group. Difference absorbance spectra of the recombinant cytochrome b(5) domain of CrΔ4FAD showed that it is functional in vitro. Green fluorescent protein fusions of CrΔ4FAD localized to the plastid envelope in Chlamydomonas. Interestingly, overproduction of CrΔ4FAD in Chlamydomonas not only increased levels of 16:4 acyl groups in cell extracts but specifically increased the total amount of MGDG. Vice versa, the amount of MGDG was lowered in lines with reduced levels of CrΔ4FAD. These data suggest a link between MGDG molecular species composition and galactolipid abundance in the alga, as well as a specific function for this fatty acid in MGDG.  相似文献   

19.
Aquatic single-cell organisms have long been believed to be unique primary producers of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA). Multiple invertebrates including annelids have been discovered to possess methyl-end desaturases enabling key steps in the de novo synthesis of ω3 LC-PUFA, and thus potentially contributing to their production in the ocean. Along methyl-end desaturases, the repertoire and function of further LC-PUFA biosynthesising enzymes is largely missing in Annelida. In this study we examined the front-end desaturase gene repertoire across the phylum Annelida, from Polychaeta and Clitellata, major classes of annelids comprising most annelid diversity. We further characterised the functions of the encoded enzymes in selected representative species by using a heterologous expression system based in yeast, demonstrating that functions of Annelida front-end desaturases have highly diversified during their expansion in both terrestrial and aquatic ecosystems. We concluded that annelids possess at least two front-end desaturases with Δ5 and Δ6Δ8 desaturase regioselectivities, enabling all the desaturation reactions required to convert the C18 precursors into the physiologically relevant LC-PUFA such as eicosapentaenoic and arachidonic acids, but not docosahexaenoic acid. Such a gene complement is conserved across the different taxonomic groups within Annelida.  相似文献   

20.
Pheromone biosynthesis-activating neuropeptide (PBAN) stimulates sex pheromone biosynthesis by activating PBAN receptor (PBANr), which triggers a specific signal transduction in the pheromone gland cells. We have shown that RNA interference (RNAi) of PBANr of Plutella xylostella significantly suppressed pheromone biosynthesis and subsequent mating behavior. In order to assess molecular events occurring downstream of PBAN signaling, we cloned partial sequences of Δ9 and Δ11 fatty acid desaturases of P. xylostella. Phylogenetic analysis indicated that these two desaturase genes were highly clustered with other desaturases associated with sex pheromone biosynthesis in other insects. RT-PCR analysis showed that Δ9 desaturase was dominantly expressed in adult females, whereas Δ11 desaturase was expressed in all P. xylostella developmental stages. When PBANr expression was suppressed by PBANr-RNAi, the treated females also showed significant suppression of expression of both desaturases. These results suggest that expressions of the two desaturases are controlled by PBAN and that the two desaturases may be involved as downstream components in sex pheromone biosynthesis of P. xylostella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号