首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel and potent inhibitors of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) were identified based on oxazolidinedione and thiazolidinedione derivatives, starting from a high-throughput screening hit, 5-(3-bromo-4-hydroxybenzyl)-3-(4-methoxyphenyl)-1,3-thiazol-2-one. 5-(3-Bromo-4-hydroxybenzylidene)-3-(4-methoxyphenyl)-2-thioxo-1,3-thiazolidin-4-one exhibited a promising activity profile and demonstrated significant selectivity over the related 17β-HSD isoenzymes and nuclear receptors.  相似文献   

2.
3.
17β-Hydroxysteroid dehydrogenase type 10 (17β-HSD10) is a mitochondrial enzyme known for its potential role in Alzheimer’s Disease (AD). 17β-HSD10, by its oxidative activity, could decrease the concentration of two important neurosteroids, allopregnanolone (ALLOP) and 17β-estradiol (E2), respectively preventing their neurogenesis and neuroprotective effects. Since the inhibition of 17β-HSD10 could lead to a new treatment for AD, we developed two biological assays using labeled ALLOP or E2 as substrates to measure the inhibitory activity of compounds against pure 17β-HSD10 protein. After the optimization of different parameters (time, concentration of enzyme, substrate and cofactor), analogs of the first reported steroidal inhibitor of 17β-HSD10 in intact cells were screened to determine their inhibitory potency for the ALLOP or the E2 oxidation. One compound, androstane derivative 5, possesses the best dual inhibition against both transformations (ALLOP, IC50?=?235?μM and E2, IC50?=?610?μM). Some compounds are dual inhibitors to a lesser extent, and others seem selective for one of the transformations in particular. By developing two reliable assays and by identifying a first generation of steroidal inhibitors of pure 17β-HSD10, this preliminary study opens the door to new and more potent inhibitors.  相似文献   

4.
17Beta-hydroxysteroid dehydrogenase type 3 (17β-HSD3) is a steroidogenic enzyme that catalyzes the transformation of 4-androstene-3,17-dione (Δ?-dione) into androgen testosterone (T). To provide effective inhibitors of androgen biosynthesis, we synthesized two different series (amines and carbamates) of 3β-substituted-androsterone derivatives and we tested their inhibitory activity on 17β-HSD3. From the results of our structure-activity relationship study, we identified a series of compounds producing a strong inhibition of 17β-HSD3 overexpressed in HEK-293 cells (homogenized cells). The most active compound when tested in intact HEK-293 transfected cells, namely (3α,5α)-3-{[trans-2,5-dimethyl-4-{[2-(trifluoromethyl)phenyl] sulfonyl}piperazin-1-yl]methyl}-3-hydroxyandrostan-17-one (15b), shows an IC?? value of 6 nM, this compound is thus eight times more active than our reference compound D-5-2 (IC??=51 nM). This new improved inhibitor did not stimulate the proliferation of androgen-sensitive Shionogi cells, suggesting a non-androgenic profile. Compound 15b is thus a good candidate for further in vivo studies on rodents.  相似文献   

5.
Spiromorpholinone derivatives were synthesized from androsterone or cyclohexanone in 6 or 3 steps, respectively, and these scaffolds were used for the introduction of a hydrophobic group via a nucleophilic substitution. Non-steroidal spiromorpholinones are not active as inhibitors of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3), but steroidal morpholinones are very potent inhibitors. In fact, those with (S) stereochemistry are more active than their (R) homologues, whereas N-benzylated compounds are more active than their non substituted precursors. The target compounds exhibited strong inhibition of 17β-HSD3 in rat testis homogenate (87–92% inhibition at 1 μM).  相似文献   

6.
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC50-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.  相似文献   

7.
8.
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the formation of the potent proliferation-stimulating hormone estradiol, and it is thus involved in the development of hormone-dependent breast cancer. Due to its high substrate specificity and the known relationships between its overexpression and disease incidence, 17β-HSD1 is considered an attractive target for drug development. Here, we have used structure-based virtual high-throughput screening to successfully identify potent nonsteroidal 17β-HSD1 inhibitors. Computational screening of a drug-like database containing 13 million compounds identified hits with a 2-benzylidenebenzofuran-3(2H)-one scaffold that we show to be highly potent 17β-HSD1 inhibitors. The most potent in the series, compound 1, showed an IC(50) of 45nM in our 17β-HSD1 inhibition assay, and also showed good selectivity for 17β-HSD1 over 17β-HSD2.  相似文献   

9.
Starting from screening hit, (4S,7R)-1,7,8,8-tetramethyl-2-phenyl-1,2,4,5,6,7-hexahydro-4,7-methano-indazol-3-one (7), we optimized the potency and pharmacokinetic properties. This led to the identification of compounds with good in vivo activity in a mouse pharmacodynamic model of inhibition of 11βHSD1.  相似文献   

10.
The synthesis and SAR studies of 3- and 4-substituted 7-hydroxycoumarins as novel 17β-HSD3 inhibitors are discussed. The most potent compounds from this series exhibited low nanomolar inhibitory activity with acceptable selectivity versus other 17β-HSD isoenzymes and nuclear receptors.  相似文献   

11.
We have previously reported the discovery of a new class of potent inhibitors of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) derived from benzylidene oxazolidinedione and thiazolidinedione scaffolds. In this study, these analogs were designed, synthesized, and evaluated in a human cell-based assay. The detailed structure-activity relationship (SAR) surrounding this pharmacophore were developed, and consequently a number of compounds from this series demonstrated single-digit nanomolar 17β-HDS3 inhibitory activity in vitro. Subsequent optimization work in pursuit of the improvement of oral bioavailability demonstrated in vivo proof-of-concept by prodrug strategy based on phosphate esters for these 17β-HSD3 inhibitors. When a phosphate ester 16 was administered orally at a high dose of 100mg/kg, 16 showed approximately two times more potent testosterone (T)-lowering effect against a positive control in the luteinizing hormone-releasing hormone (LH-RH)-induced T production assay. The T-lowering effect continued at ca 10% level of control over 4h after administration. The nonsteroidal molecules based on this series have the potential to provide unique and effective clinical opportunities for treatment of prostate cancer.  相似文献   

12.
《Gene》1998,208(2):229-238
In the present study, the gene encoding rat 17β-hydroxysteroid dehydrogenase type 1 (rHSD17B1 gene) was cloned and characterized. Like the analogous human gene (hHSD17B1), rHSD17B1 contains six exons and five introns spanning approximately 2.2 kb. The identity between the exons and introns of the two genes ranges from 58% to 82% and 42% to 57%, respectively. In contrast to hHSD17B1, rHSD17B1 is not duplicated. The cap site for rHSD17B1 was localized to position −41 upstream of the ATG translation initiation codon. Sequence comparison of the first 200 bp upstream of the cap site showed 72% identity between the human and rat HSD17B1 genes, including a conserved GC-rich area. Further upstream, no significant identity between the two genes was observed and several, cis-acting elements known to modulate the expression of hHSD17B1 are not conserved in the rat gene. Rat HSD17B1 unlike hHSD17B1 with two cap sites, possesses two polyadenylation signals, thus resulting in two mRNAs.  相似文献   

13.
A non-estrogenic inhibitor of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) was designed based on a modified 3-hydroxy-estra-1,3,5(10)-triene core having an additional five-member lactone ring and a benzamide group. The inhibitor was synthesized, fully characterized and tested for its ability to inhibit the enzyme activity. Estrogenicity was also investigated and tested on estrogen-dependent T-47D cell line. Interestingly, this steroid derivative showed inhibitory potency towards 17β-HSD1 and did not present residual unwanted estrogenic activity.  相似文献   

14.
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) converts the potent estrogen estradiol into the weakly active keto form estrone. Because of its expression in bone, inhibition of 17β-HSD2 provides an attractive strategy for the treatment of osteoporosis, a condition that is often caused by a decrease of the active sex steroids. Currently, there are no drugs on the market targeting 17β-HSD2, but in multiple studies, synthesis and biological evaluation of promising 17β-HSD2 inhibitors have been reported. Our previous work led to the identification of phenylbenzenesulfonamides and -sulfonates as new 17β-HSD2 inhibitors by ligand-based pharmacophore modeling and virtual screening. In this study, new molecules representing this scaffold were synthesized and tested in vitro for their 17β-HSD2 activity to derive more profound structure-activity relationship rules.  相似文献   

15.
17β-Hydroxysteroid dehydrogenase type 3 and 5 (17β-HSD3 and 17β-HSD5) catalyze testosterone biosynthesis and thereby constitute therapeutic targets for androgen-related diseases or endocrine-disrupting chemicals. As a fast and efficient tool to identify potential ligands for 17βHSD3/5, ligand- and structure-based pharmacophore models for both enzymes were developed. The models were evaluated first by in silico screening of commercial compound databases and further experimentally validated by enzymatic efficacy tests of selected virtual hits. Among the 35 tested compounds, 11 novel inhibitors with distinct chemical scaffolds, e.g. sulfonamides and triazoles, and with different selectivity properties were discovered. Thereby, we provide several potential starting points for further 17β-HSD3 and 17β-HSD5 inhibitor development. Article from the Special issue on Targeted Inhibitors.  相似文献   

16.
Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) is a multifunctional isoenzyme functional in the conversion of estrone to estradiol (E2), and elongation of long-chain fatty acids, in particular the conversion of palmitic to archadonic (AA) acid, the precursor of sterols and the inflammatory mediator, prostaglandin E2. Its overexpression together with that of COX-2 in breast carcinoma is associated with a poor prognosis. We have identified the HSD17B12114–122 peptide (IYDKIKTGL) as a naturally presented HLA-A*0201 (HLA-A2)-restricted CD8+ T-cell-defined epitope. The HSD17B12114–122 peptide, however, is poorly immunogenic in its in vitro ability to induce peptide-specific CD8+ T cells. Acting as an “optimized peptide”, a peptide (TYDKIKTGL), which is identical to the HSD17B12114–122 peptide except for threonine at residue 1, was required for inducing in vitro the expansion of CD8+ T-cell effectors cross-reactive against the HSD17B12114–122 peptide. In IFN-γ ELISPOT assays, these effector cells recognize HSD17B12114–122 peptide-pulsed target cells, as well as HLA-A2+ squamous cell carcinoma of the head and neck (SCCHN) and breast carcinoma cell lines overexpressing HSD17B12 and naturally presenting the epitope. Whereas growth inhibition of a breast carcinoma cell line induced by HSD17B12 knockdown was only reversed by AA, in a similar manner, the growth inhibition of the SCCHN PCI-13 cell line by HSD17B12 knockdown was reversed by E2 and AA. Our findings provide the basis for future studies aimed at developing cancer vaccines for targeting HSD17B12, which apparently can be functional in critical metabolic pathways involved in inflammation and cancer.  相似文献   

17.
Indole-pyrrolidines were identified as inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) by high-throughput screening. Optimisation of the initial hit through structure-based design led to 7-azaindole-derivatives, with the best analogues displaying single digit nanomolar IC(50) potency. The modeling hypotheses were confirmed by solving the X-ray co-crystal structure of one of the lead compounds. These compounds were selective against 11β-hydroxysteroid dehydrogenase type 2 (selectivity ratio >200) and exhibited good inhibition of 11β-HSD1 (IC(50)<1μM) in a cellular model (3T3L1 adipocytes).  相似文献   

18.
The mouse enzyme type 5 17-hydroxysteroid dehydrogenase (17-HSD) catalyzes the conversion of androstenedione to testosterone and, to a lesser degree, the conversion of estrone to estradiol. In order to determine the exact sites of action of type 5 17-HSD, we studied the cellular localization of the mRNA of the enzyme in mouse tissues by using in situ hybridization. Specific hybridization signal was found in the liver, ovary, adrenal cortex, and kidney. In the liver of mice of both sexes, a strong signal was observed in all hepatocytes. In the ovary, specific labeling was detected in the granulosa and theca interna cells in growing follicles and in luteal cells. In the female adrenal cortex, intense labeling was restricted to the zona reticularis, whereas no type 5 17-HSD mRNA expression could be found in the male adrenal cortex. In the kidney of mice of both sexes, type 5 17-HSD mRNA was expressed in epithelial cells in both the proximal and distal convoluted tubules. The data indicate that androgens and estrogens are formed via the action of type 5 17-HSD in specific cell types in the liver, ovary, adrenal cortex, and kidney.This work was supported by Genome Canada and Genome Québec.  相似文献   

19.
Inhibition of the local formation of estrogens seems to be an attractive strategy for pharmacological intervention in hormone-dependent disorders. The direct antiproliferative properties of ten nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) inhibitors were investigated on human cancer cell lines of gynecological origin. The mechanism of the antiproliferative action was approximated by cell cycle analysis, fluorescent microscopy, BrdU assay, determination of caspase-3 activity and quantification of the expression of cell cycle regulators at mRNA level. Treatment of HeLa cells with some of the compounds resulted in a concentration-dependent inhibition of the G1–S transition and an increase in the apoptotic population. The most effective agents increased the expression of tumor suppressors p21 and p53, while CDK2 and Rb were down-regulated. The reported anticancer actions of the tested compounds are independent of the 17β-HSD1-inhibiting capacity. These results indicate that it is possible to combine direct antiproliferative activity and 17β-HSD1 inhibition resulting in novel agents with dual mode of action.  相似文献   

20.
The 17β-hydroxysteroid dehydrogenases (17β-HSDs) are key enzymes in the downstream process of steroid hormone biosynthesis. To date, relatively little is known about the role of 17β-HSDs in marine gastropods. In the present study, a putative cDNA sequence encoding type 12 17β-HSD (17β-HSD-12) was identified in abalone (Haliotis diversicolor supertexta). The full-length cDNA was 1,978 bp, including an open reading frame (ORF) of 963 bp that encoded a protein of 321 amino acids. Comparative structural analysis revealed that abalone 17β-HSD-12 shared 39.8-42.8% amino acid identity with other 17β-HSD-12 homologues and that the functional domains were well conserved. Phylogenetic analysis revealed that abalone 17β-HSD-12 belonged to the short-chain dehydrogenases/reductases (SDRs) family. Functional analysis following transient transfection of the ORF in human embryonic kidney-293 (HEK-293) cells indicated that abalone 17β-HSD-12 had the ability to convert estrone (E1) into estradiol (E2). Expression analysis in vivo demonstrated that abalone 17β-HSD-12 was differentially expressed during the three reproductive stages (pre-spawning, spawning, and post-spawning). These results indicate that abalone 17β-HSD-12 is an SDR family member with a key role in steroidogenesis during the reproductive period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号