首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid rafts are microdomains enriched in cholesterol and sphingolipids that contain specific membrane proteins. The resistance of domains to extraction by nonionic detergents at 4°C is the commonly used method to characterize these structures that are operationally defined as detergent-resistant membranes (DRMs). Because the selectivity of different detergents in defining membrane rafts has been questioned, we have compared DRMs from human erythrocytes prepared with two detergents: Triton X-100 and C12E8. The DRMs obtained presented a cholesterol/protein mass ratio three times higher than in the whole membrane. Flotillin-2 was revealed in trace amounts in DRMs obtained with C12E8, but it was almost completely confined within the DRM fraction with Triton X-100. Differently, stomatin was found distributed in DRM and non-DRM fractions for both detergents. We have also measured the order parameter (S) of nitroxide spin labels inserted into DRMs by means of electron paramagnetic resonance. The 5- and 16-stearic acid spin label revealed significantly higher S values for DRMs obtained with either Triton X-100 or C12E8 in comparison to intact cells, while the difference in the S values between Triton X-100 and C12E8 DRMs was not statistically significant. Our results suggest that although the acyl chain packing is similar in DRMs prepared with either Triton X-100 or C12E8 detergent, protein content is dissimilar, with flotillin-2 being selectively enriched in Triton X-100 DRMs.  相似文献   

2.
Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Re sat—the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.  相似文献   

3.
Interactions between delipidated Ca2+-ATPase from sarcoplasmic reticulum and four nonionic detergents—dodecyl octaoxyethyleneglycol monoether (C12E8), Triton X-100, Brij 58, and Brij 35—were characterized with respect to activation of ATPase activity, binding, and solubilization. C12E8 and Triton X-100 activated the delipidated ATPase to at least 80% of the original activity at the critical micelle concentrations (CMCs), whereas Brij 58 and Brij 35 activated no more than 10% of the original activity. The inability of Brij 58 and Brij 35 to activate the delipidated enzyme was probably a result of reduced binding of these detergents below the CMCs; both detergents exhibited a sixteenfold reduction in binding at the CMC compared with C12E8. The two Brij detergents were also unable to solubilize the delipidated enzyme and form monomers, as determined by sedimentation experiments. Thus the reduced binding levels of these detergents may result from an inability to overcome protein/protein interactions in the delipidated preparation. However, the Brij detergents were capable of solubilizing active enzyme from membrane vesicles, although with lower efficiency than C12E8 and Triton X-100. These results suggest that Brij 58 and 35 may be useful for solubilization of membrane proteins without disrupting protein/protein interactions, while Triton X-100 and C12E8 are more useful when bulk solubilization is the goal.  相似文献   

4.
The properties of Ca2+-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C12E8) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than solubilization with C12E8 or Triton X-100. DHPC was determined to be superior to C12E8; while that the C12E8 was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca2+-ATPase retained the E1Ca−E1*Ca conformational transition as that observed for native microsomes; whereas the C12E8 and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca2+ transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C12E8 and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca2+-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C12E8 and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca2+ uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca2+-ATPase retained more organized and native secondary conformation compared to C12E8 and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C12E8 and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of the membrane-bound enzyme.  相似文献   

5.
Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4?°C and 37?°C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs – a detergent that preferentially solubilizes the membrane inner leaflet – while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.  相似文献   

6.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 °C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

7.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 degrees C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

8.
Chen X  Morris R  Lawrence MJ  Quinn PJ 《Biochimie》2007,89(2):192-196
The action of detergents in the isolation of detergent-resistant membrane fractions from rat brain is reported. Triton X-100 treatment of whole rat brain homogenate at 4 degrees C produced detergent-resistant membranes with a density of 1.07g/ml compared with Brij96 where the density of the membrane was only 1.05g/ml. The DRM fractions isolated using Triton X-100 are considerably heavier than those isolated from homogenates treated with Brij96. The major polar lipid composition of DRMs derived from Brij96 treated homogenates have a higher proportion of aminophospholipids compared with choline phospholipids than Triton X-100 derived DRMs; this may indicate that DRMs from Brij96 treated homogenates are more closely related to the parent membrane in lipid composition. Solubilization by Triton X-100 at higher temperatures resulted in the appearance of a second detergent-resistant membrane fraction distinctly lighter in density than the membrane recovered at density 1.07g/ml. Analysis of phospholipid composition of the brain homogenate during detergent treatment for up to 30min at 37 degrees C showed a decreasing proportion of sphingomyelin. Treatment of homogenates at 37 degrees C appears to activate phospholipases/sphingomyelinases that may alter the lipid content of isolated DRMs. The presence of K+/Mg2+ with Brij96 treatment results in DRM fractions with significantly thicker bilayers and of larger vesicle diameter than DRMs isolated from either Triton X-100 or Brij96 treated homogenates in the absence of cations.  相似文献   

9.
We identified α2, α1, and β1 isoforms of Na+/K+-ATPase in caveolae vesicles of bovine pulmonary smooth muscle plasma membrane. The biochemical and biophysical characteristics of the α2β1 isozyme of Na+/K+-ATPase from caveolae vesicles were studied during solubilization and purification using the detergents 1,2-heptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C12E8), and Triton X-100, and reconstitution with the phospholipid dioleoyl-phosphatidylcholine (DOPC). DHPC was determined to be superior to C12E8, whereas C12E8 was better than Triton X-100 in the active enzyme yields and specific activity. Fluorescence studies with DHPC-purified α2β1 isozyme of Na+/K+-ATPase elicited higher E1Na?E2 K transition compared with that of the C12E8- and Triton X-100-purified enzyme. The rate of Na+ efflux in DHPC–DOPC-reconstituted isozyme was higher compared to the C12E8–DOPC- and Triton X100–DOPC-reconstituted enzyme. Circular dichroism analysis suggests that the DHPC-purified α2β1 isozyme of Na+/K+-ATPase possessed more organized secondary structure compared to the C12E8- and Triton X-100-purified isozyme.  相似文献   

10.
We have used isothermal titration calorimetry (ITC) to study the thermodynamics of Triton X-100 (TX-100), deoxycholate and decyl octaethylene glycol (C10EO8) penetration into bilayers composed of native (ESM) and hydrogenated egg yolk sphingomyelin (DHSM). Light scattering measurements were used to study the point of saturation (Re,sat) and the onset of solubilization of membranes by the detergents. We found that DHSM bilayers at 25 °C were much more resistant to detergent partitioning (lower K) and gave higher reaction enthalpies (ΔH) for all three detergents compared to the ESM bilayer system. Because DHSM lacks double bonds (Δ4trans and some cis bonds as well), attractive acyl chain interactions are favored in membranes of this lipid class. The high stability and cohesion of DHSM in membranes could be a crucial functional property of this lipid as it is enriched in eye lens membranes.  相似文献   

11.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+-ATPase and the Mg2+-ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membranebound Mg2+-ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20°C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+-ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at ?20°C, which was characteristic of hepatoma plasma membrane Mg2+-ATPase. With solubilized Mg2+-ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+-ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at ?20°C.  相似文献   

12.
The cell type of election for the study of cell membranes, the mammalian non-nucleated erythrocyte, has been scarcely considered in the research of membrane rafts of the plasma membrane. However, detergent-resistant-membranes (DRM) were actually first described in human erythrocytes, as a fraction resisting solubilization by the nonionic detergent Triton X-100. These DRMs were insoluble entities of high density, easily pelleted by centrifugation, as opposed to the now accepted concept of lipid raft-like membrane fractions as material floating in low-density regions of sucrose gradients. The present article reviews the available literature on membrane rafts/DRMs in human erythrocytes from an historical point of view, describing the experiments that provided the solution to the above described discrepancy and suggesting possible avenue of research in the field of membrane rafts that, moving from the most studied model of living cell membrane, the erythrocyte’s, could be relevant also for other cell types.  相似文献   

13.
Specific proteins and lipids sequester to regions of cell membranes called rafts. Due to their high content of sphingomyelin (SM) and cholesterol, raft bilayers are thicker than nonraft bilayers and, at least at 4 degrees C, are resistant to Triton X-100 extraction. It has been postulated that rafts concentrate proteins with long transbilayer domains because of "hydrophobic matching" between the transbilayer domain and the thick bilayer hydrocarbon region. However, because the area compressibility and bending moduli of SM:cholesterol bilayers are larger than that of nonraft bilayers, there should be an energy cost to partition proteins or peptides into rafts. To determine the effects on peptide sorting of raft thickness and mechanical properties, we incorporated two transbilayer peptides (P-23, P-29) into bilayers composed of SM, dioleoylphosphatidylcholine, and cholesterol, separated detergent-soluble membranes (DSMs) from detergent-resistant membranes (DRMs), and measured their peptide and lipid compositions. P-23 and P-29 were designed to have transbilayer domains that matched the hydrocarbon thicknesses of DSMs and DRMs, respectively. At both 4 degrees C and 37 degrees C DSMs were enriched in dioleoylphosphatidylcholine and DRMs were enriched in SM and cholesterol. At both temperatures both P-23 and P-29 preferentially localized to DSMs, demonstrating the importance of bilayer mechanical properties relative to hydrophobic mismatch. However, at 37 degrees C significantly more P-29 than P-23 was located in DRMs, implying that hydrophobic matching played a role in peptide sorting at physiological temperature. These experiments demonstrate that the sorting of peptides as measured by detergent extraction is temperature-dependent and both bilayer mechanical properties and hydrophobic matching impact peptide distribution between DSMs and DRMs.  相似文献   

14.
Abstract

Insolubility of membrane components in non-ionic detergents such as Triton X-100 at low temperature is a widely used biochemical criterion to identify, isolate and characterize membrane domains. In this work, we monitored the detergent insolubility of the serotonin1A receptor in CHO cell membranes and its modulation by membrane cholesterol. The serotonin1A receptor is an important member of the G-protein coupled receptor family. It is implicated in the generation and modulation of various cognitive, behavioral and developmental functions and serves as a drug target. Our results show that a significant fraction (~ 28%) of the serotonin1A receptor resides in detergent-resistant membranes (DRMs). Interestingly, the fraction of the serotonin1A receptor in DRMs exhibits a reduction upon membrane cholesterol depletion. In addition, we show that contents of DRM markers such as flotillin-1, caveolin-1 and GM1 are altered in DRMs upon cholesterol depletion. These results assume significance since the function of the serotonin1A receptor has previously been shown to be affected by membrane lipids, specifically cholesterol. Our results are relevant in the context of membrane organization of the serotonin1A receptor in particular, and G-protein coupled receptors in general.  相似文献   

15.
Receptors for thyrotropin-releasing hormone were solubilized by Triton X-100. Membrane fractions from GH3 pituitary tumor cells were incubated with thyrotropin-releasing hormone in order to saturate specific receptor sites before the addition of detergent. The amount of protein-bound hormone solubilized by Triton X-100 was proportional to the fractional saturation of specific membrane receptors. Increasing detergent: protein ratios from 0.5 to 20 led to a progressive loss of hormone · receptor complex from membrane fractions with a concomitant increase in soluble protein-bound hormone. The soluble hormone · receptor complex was not retained by 0.22 μm filters and remained soluble after ultracentrifugation. Following incubation with high (2.5–10%) concentration of Triton X-100 and other non-ionic detergents, or following repeated detergent extraction, at least 18% of specifically bound thyrotropin-releasing hormone remained associated with particulate material. Unlike the hormone receptor complex, the free hormone receptor was inactivated by Triton X-100. A 50% loss of binding activity was obtained with 0.01% Triton X-100, corresponding to a detergent: protein ratio of 0.033.The hormone · receptor complex was included in Sepharose 6B and exhibited an apparent Stokes radius of 46 Å in buffers containing Triton X-100. The complex aggregated in detergent-free buffers. Soluble hormone receptors were separated from excess detergent and thyrotropin-releasing hormone by chromatography on DEAE-cellulose. Thyrotropin-releasing hormone dissociated from soluble receptors with a half-time of 120 min at 0°c, while the membrane hormone · receptor complex was stable for up to 5 h at 0°C.  相似文献   

16.
Interactions between delipidated Ca2+-ATPase from sarcoplasmic reticulum and four nonionic detergents--dodecyl octaoxyethyleneglycol monoether (C12E8), Triton X-100, Brij 58, and Brij 35--were characterized with respect to activation of ATPase activity, binding, and solubilization. C12E8 and Triton X-100 activated the delipidated ATPase to at least 80% of the original activity at the critical micelle concentrations (CMCs), whereas Brij 58 and Brij 35 activated no more than 10% of the original activity. The inability of Brij 58 and Brij 35 to activate the delipidated enzyme was probably a result of reduced binding of these detergents below the CMCs; both detergents exhibited a sixteenfold reduction in binding at the CMC compared with C12E8. The two Brij detergents were also unable to solubilize the delipidated enzyme and form monomers, as determined by sedimentation experiments. Thus the reduced binding levels of these detergents may result from an inability to overcome protein/protein interactions in the delipidated preparation. However, the Brij detergents were capable of solubilizing active enzyme from membrane vesicles, although with lower efficiency than C12E8 and Triton X-100. These results suggest that Brij 58 and 35 may be useful for solubilization of membrane proteins without disrupting protein/protein interactions, while Triton X-100 and C12E8 are more useful when bulk solubilization is the goal.  相似文献   

17.
We have studied the effects of cations and detergents on the structure (molecular weight) and photochemistry of Triton X-100 Photosystem II subchloroplast particles (TSF-IIa). The effect of Mg2+ ions on activity depended on the Triton X-100 content of the preparation. If the residual Triton X-100 was not removed prior to assay, MgCl2 increased the rate of electron transport, acting at a site on the reducing side of Photosystem II. Lowering the pH also increased the rate of electron transport. If the Triton X-100 was removed from the particles, both MgCl2 and NaCl caused a decrease in the rate of electron transport. Addition of Triton X-100 caused a reversible decrease in the number of active Photosystem II reaction centers. Both cations and Triton X-100 had a profound effect on the molecular weight of the Photosystem II particles as determined by gel filtration. At 20 °C, addition of 0.05% Triton X-100 decreased the molecular weight from a high value (≥800,000) to 250,000. At 4 °C, addition of 1 mm MgCl2 or 100 mm NaCl increased the molecular weight of the complex. In the absence of these salts 67% of the protein eluted with a molecular weight of 460,000 (the rest was >800,000-in the void volume). In the presence of these salts all of the material had a molecular weight of ≥800,000. A similar effect was observed when the pH was lowered from 8 to 6. Further work is needed to determine whether there is a correlation between the changes in molecular weight and activity.  相似文献   

18.
Detergent-resistant membranes (DRMs) from Leishmania (Viannia) braziliensis promastigotes, insoluble in 1% Triton X-100 at 4 degrees C, were fractionated by sucrose density gradient ultracentrifugation. They were composed of glycoinositolphospholipids (GIPLs), inositol phosphorylceramide (IPC), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and sterols. In contrast, 1% Triton X-100-soluble fraction was composed of PE, phosphatidylcholine, phosphatidylserine, PI, IPC, sterol, and lyso-PI. High-performance thin-layer chromatography (HPTLC) immunostaining using monoclonal antibody SST-1 showed that 85% of GIPLs are present in DRMs, and immunoelectron microscopic analysis showed that SST-1-reactive components are located in patches along the parasite surface. No difference in GIPL pattern was observed by HPTLC between Triton X-100-soluble versus -insoluble fractions at 4 degrees C. Analysis of fatty acid composition in DRMs by GC-MS showed the presence of GIPLs containing an alkylacylglycerol, presenting mainly saturated acyl and alkyl chains. DRMs also contained sterol, IPC with saturated fatty acids, PI with at least one saturated acyl chain, and PE with predominantly oleic acid. Promastigotes treated with methyl-beta-cyclodextrin to disrupt lipid microdomains showed significantly lower macrophage infectivity, suggesting a relationship between lipid microdomains and the infectivity of these parasites.  相似文献   

19.
Larvae of the tobacco caterpillar, Spodoptera litura (Fab.) were topically bioassayed with cypermethrin emulsion formulation and proprietary EC in combination with different solvents and emulsifiers for their toxicity at 16 ± 2°C and 27 ± 1°C. Among different solvents, the descending order of efficacy (with relative toxicity in parenthesis) against 9 ± 1 day old larvae of S. litura (Fab.) at 16 ± 2°C than 27 ± 1°C was: xylene (7.41), aromex (5.54), cyclohexane (4.93), C-IX (3.93), benzene (2.40) and toluene (2.26). With emulsifier, the order was: Triton X-100 (7.41), SN4S (4.60), Teepol (2.90), Tween-80 (1.49), Swascofix DP-50 (1.28), SN4R (1.10) and S52B (1.07). However, the proprietary cypermethrin EC was 2.31 times more toxic at 16 ± 2°C than at 27 ± 1°C.  相似文献   

20.
Ester Formation by Alcohol Acetyltransferase from Brewers’ Yeast   总被引:2,自引:0,他引:2  
Alcohol acetyltransferase responsible for the formation of acetate esters during beer fermentation was found to be localized at the cell membrane of brewers’ yeast. This cell membrane-bound enzyme was purified 120-fold by solubilization with Triton X-100, gel filtration on a Sepharose 6B column and chromatography on a DEAE-Sephadex A-50 column. The enzyme was most active at 30°C at pH 7 ? 8. It was least active against C3 alcohol among C1 ? C6 alcohols, and slightly more active against straight-chain alcohols than against branched-chain alcohols with the same carbon number. The enzyme was strongly inhibited by unsaturated fatty acids, heavy metal ions and sulfhydryl reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号