首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary By means of 3H-thymidine and autoradiography it could be established that in rats and mice the A1, A2 and A3 spermatogonia do not give rise to a significant number of stem cells.The number of A0 spermatogonia was found to be circa 20% of the number of A0+A1 spermatogonia in the rat and circa 10% in the mouse.The author wishes to thank Prof. Dr. M. T. Jansen and Dr. M. F. Kramer for helpful discussions and Mr. J. G. van Essen for technical assistance.  相似文献   

2.
Summary Four different types of spermatogonia were identified in the seminiferous tubules of the Japanese quail: a dark type A (Ad), 2 pale A type (Ap1 and Ap2), and a type B. A model is proposed describing the process of spermatogonial development in the quail. The Ad spermatogonia are considered to be the stem cells. Each divides to produce a new Ad spermatogonium and a Ap1 spermatogonium during Stage IX of the cycle of the seminiferous epithelium. An Ap1 spermatogonium produces two Ap2 spermatogonia during Stage II of the cycle, Ap2 spermatogonia produce four type B spermatogonia during Stage VI of the cycle, and type B spermatogonia produce eight primary spermatocytes during Stage III of the cycle. Consequently, 32 spermatids can result from each division of an Ad spermatogonium. Spermatogonial development in the quail differs from the process described in mammals in that there are fewer mitotic divisions and they are all synchronized with the cycle of the seminiferous epithelium. It is suggested that the fewer mitotic divisions explain why a smaller area of the seminiferous tubule is occupied by a cellular association in the quail than in mammals like the rat, ram and bull. The duration of spermatogenesis from the division of the Ad spermatogonia to sperm release from the seminiferous epithelium was estimated to be 12.77 days.  相似文献   

3.
ABSTRACT In the Chinese hamster, 17 days, i. e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermato-gonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. the following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i. e. newborn stem cells that still have to migrate away. mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

4.
Spermatogonia- stem cells and progenitors of adult spermatogenesis- are killed through a p53-regulated apoptotic process after γ-irradiation but the death effectors are still poorly characterized. Our data demonstrate that both intrinsic and extrinsic apoptotic pathways are involved, and especially that spermatogonia can be split into two main populations, according to apoptotic effectors. Following irradiation both Dr5 and Puma genes are upregulated in the α6-integrin-positive Side Population (SP) fraction, which is highly enriched in spermatogonia. Flow cytometric analysis confirms an increased number of Dr5-expressing SP cells, and Puma-β isoform accumulates in α6-integrin positive cellular extracts, enriched in spermatogonia. Trail−/− or Puma−/− spermatogonia display a reduced sensitivity to radiation-induced apoptosis. The TUNEL kinetics strongly suggest that the extrinsic and intrinsic pathways, via Trail/Dr5 and Puma respectively, could be engaged in distinct subpopulations of spermatogonia. Indeed flow cytometric studies show that Dr5 receptor is constitutively present on more than half of the undifferentiated progenitors (Kit α6 + SP) and half of the differentiated ones (Kit+ α6 + SP). In addition after irradiation, Puma is not detected in the Dr5-positive cellular fraction isolated by immunomagnetic purification, while Puma is present in the Dr5-negative cell extracts. In conclusion, adult testicular progenitors are divided into distinct sub-populations by apoptotic effectors, independently of progenitor types (immature Kit-negative versus mature Kit-positive), underscoring differential radiosensitivities characterizing the stem cell/progenitors compartment.  相似文献   

5.
Summary The nuclear structure of human spermatogonia has been studied with electron microscopical and histochemical methods. Type B spermatogonia have chromatin clumps without any special ultrastructure and several nucleoli. Five different types of nuclear bodies, and besides, a nuclear vacuole, have been observed in type A spermatogonia. Type I bodies are typical nucleoli consisting of three regions: amorphous, fibrillar and granular. Type II, III and V are considered to be atypical nucleoli. Type IV bodies are small chromatin condensations. Type I bodies are the only ones in which RNA was demonstrated by light histochemical techniques and no PAS positive material was found inside the nuclei. The absence of any special ultrastructure in the chromatin from spermatogonia, and the small mass of the chromatin condensations, show that the human X chromosome and perhaps the Y chromosome are not heteropycnotic in the interphasic nuclei of human spermatogonia.Abbreviations Used RNA ribonucleic acid - gonia spermatogonia This work has been supported by a grant (No. 2623) of the Consejo Nacional de Investigaciones Cientificas y Tecnicas, and partially by a grant (C.M. 6522) from the Population Council.We wish to thank Professor R. E. Mancini for his suggestions during this investigation and his support for its achievement, and to Dr. J. C. Lavieri for providing the biopsies.  相似文献   

6.
The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse   总被引:1,自引:0,他引:1  

Background  

Life-long production of spermatozoa depends on spermatogonial stem cells. Spermatogonial stem cells exist among the most primitive population of germ cells – undifferentiated spermatogonia. Transplantation experiments have demonstrated the functional heterogeneity of undifferentiated spermatogonia. Although the undifferentiated spermatogonia can be topographically divided into As (single), Apr (paired), and Aal (aligned) spermatogonia, subdivision of this primitive cell population using cytological markers would greatly facilitate characterization of their functions.  相似文献   

7.
THE SPERMATOGONIAL STEM CELL POPULATION IN ADULT RATS   总被引:2,自引:0,他引:2  
Radioautographed whole mounted seminiferous tubules from adult rat testes were used to analyse undifferentiated type A spermatogonia at various intervals up to 81 hr following a single injection of 3H-TdR. the data obtained led to the identification of the spermatogonial stem cell and to the formulation of a new model for spermatogonial renewal and differentiation. Undifferentiated type A cells were morphologically alike, but were topographically classified as (1) isolated or (2) paired and aligned. Although labeled isolated A cells were scattered over most stages of the seminiferous epithelium, their proliferative activity varied with the stage; their labeling index was 20-30% in stages I and II, but less than 1% in stages VII and VIII. By tracing the labeled divisions of isolated A spermatogonia in time, it was seen that some daughter cells became separated from one another to form two new isolated cells, while others remained together as paired A spermatogonia. Analysis of two successive waves of labeled mitoses revealed that most paired A spermatogonia continued to proliferate forming four aligned A cells, many of which divided again to produce a chain of eight and so on. the greatest incidence of labeling among paired and aligned A spermatogonia occurred in stages XIII-III. In stage I, where the labeling index was 50%, the calculated proliferative fraction was 1 for these spermatogonia. Between stages II and V, they began to leave mitotic cycle, and during stage V this entire cohort morphologically transformed into A1 spermatogonia. Labeled metaphase curves for undifferentiated A spermatogonia were distinct from any of the curves previously constructed for the six classes of differentiating spermatogonia, especially because of particularly long S and G2 phases in the former. the cell cycle time of paired and aligned A cells was 55 hr, compared to an average of 42 hr for differentiating types A2 to B.  相似文献   

8.
Dead end is a vertebrate-specific RNA-binding protein implicated in germ cell development. We have previously shown that mouse Dead end1 (DND1) is expressed in male embryonic germ cells and directly interacts with NANOS2 to cooperatively promote sexual differentiation of fetal germ cells. In addition, we have also reported that NANOS2 is expressed in self-renewing spermatogonial stem cells and is required for the maintenance of the stem cell state. However, it remains to be determined whether DND1 works with NANOS2 in the spermatogonia. Here, we show that DND1 is expressed in a subpopulation of differentiating spermatogonia and undifferentiated spermatogonia, including NANOS2-positive spermatogonia. Conditional disruption of DND1 depleted both differentiating and undifferentiated spermatogonia; however, the numbers of Asingle and Apaired spermatogonia were preferentially decreased as compared with those of Aaligned spermatogonia. Finally, we found that postnatal DND1 associates with NANOS2 in vivo, independently of RNA, and interacts with some of NANOS2-target mRNAs. These data not only suggest that DND1 is a partner of NANOS2 in undifferentiated spermatogonia as well as in male embryonic germ cells, but also show that DND1 plays an essential role in the survival of differentiating spermatogonia.  相似文献   

9.
Spermatogonial stem cells (SSCs) reside in undifferentiated type-A spermatogonia and contribute to continuous spermatogenesis by maintaining the balance between self-renewal and differentiation, thereby meeting the biological demand in the testis. Spermatogonia have to date been characterized principally through their morphology, but we herein report the detailed characterization of undifferentiated spermatogonia in mouse testes based on their gene expression profiles in combination with topological features. The detection of the germ cell-specific proteins Nanos2 and Nanos3 as markers of spermatogonia has enabled the clear dissection of complex populations of these cells as Nanos2 was recently shown to be involved in the maintenance of stem cells. Nanos2 is found to be almost exclusively expressed in As to Apr cells, whereas Nanos3 is detectable in most undifferentiated spermatogonia (As to Aal) and differentiating A1 spermatogonia. In our present study, we find that As and Apr can be basically classified into three categories: (1) GFRα1+Nanos2+Nanos3Ngn3, (2) GFRα1+Nanos2+Nanos3+Ngn3, and (3) GFRα1Nanos2 ± Nanos3+Ngn3+. We propose that the first of these groups is most likely to include the stem cell population and that Nanos3 may function in transit amplifying cells.  相似文献   

10.
The effect of ecdysterone on specific phases of the cell cycle of Locusta migratoria migratorioides spermatogonia was assayed in vitro. An increase in labeling index was noted, indicating a decrease in duration of the G1 phase. On addition of the hormone to adapted organs in vitro, spermatogonial mitotic index increases rapidly, then declines to a basal level within a time period which approximates that of the G2 phase. Such a response indicates a removal of a G2/M inhibition by the hormone.  相似文献   

11.
The uptake ofl-[3H]glutamate,l-[3H]aspartate, -[3H]aminobutric acid (GABA), [3H]dopamine,dl-[3H]norepinephrine and [3H]5-hydroxytryptamine (5-HT) was studied in astrocytes cultured from the cerebral cortex, striatum and brain stem of newborn rat and grown for 2 weeks in primary cultures. The astrocytes exhibited a high-affinityl-glutamate uptake withK m values ranging from 11 to 110 M.V max values were 4.5 in cerebral cortex, 39.1 in striatum, and 0.4 in brain stem, nmol per mg cell protein per min. There was a less prominent high-affinity uptake ofl-aspartate withK m values from 88 to 187 M.V max values were 7.4 in cerebral cortex, 37.1 in striatum, and 3.1 in brain stem, nmol per mg cell protein per min. The high-affinity GABA uptake exhibitedK m values ranging from 5 to 17 M andV max values were 0.01 for cerebral cortex, 0.04 for striatum, and 0.1 for brain stem, nmol per mg cell protein per min. No high-affinity, high-capacity uptake was found for the monoamines. The results demonstrate a heterogeneity among the astroglial cells cultivated from the different brain regions concerning the uptake capacity of amino acid neurotransmitters. Furthermore, amino acid transmitters and monoamines are taken up by the cells in different ways.  相似文献   

12.
The problem of the sexual differentiation of the neoblasts of planarians is approached on the basis of karyological evidence assembled by the author and by his collaborators. In the polyploid and pseudogamic biotypes of Dugesia benazzii, D. lugubris and Polycelis nigra, the transformation of the neoblasts into oogonia or spermatogonia is accompanied by variations in the chromosome set. These variations may be considered to be dependent upon the gradient of sexuality — that is, of the territorial influences that determine the evolution in a female or a male direction. Significant evidence is also inferred from the chromosome cycle of hybrids between amphigonic diploid biotypes and polyploid biotypes. A new direction of research, based on the comparison between anterior and posterior regenerated segments of experimental polyploids with variable chromosome sets aims at establishing possible regional differences in the set of the neoblasts.Dedicated to Prof. Dr. J. Seiler on the occasion of his eightieth birthday.  相似文献   

13.
Summary Membranous whorls have been seen in the nuclei of peritoneal and testicular cells which had been subjected to various experimental manoeuvres. It seems likely that this is an early manifestation of cell degeneration which is demonstrated readily only by glutaraldehyde fixation, and to that extent can be regarded as a glutaraldehyde artifact. Acknowledgements. This work was supported by grants from the Medical Research Council, and the University of Sheffield Tuberculosis Research Fund, and by a grant to the Department from Unilever Ltd.I am grateful to Professor R. Barer for his advice and criticism, to Dr. G. A. Meek for guidance on electron microscopy, to Dr. E. J. Clegg for permission to use material from joint experiments. Technical and photographic assistance was provided by Messrs. P. GarLick and L. Murgatroyd and by Miss M. Tune.  相似文献   

14.
Summary A cell cycle analysis of theTrichoplusia ni (TN-368) insect cell line is described. By means of autoradiography and percent labeled metaphase data, the cell cycle parameters were determined to be as follows: S, 4.5 hr; G2, 8.5 hr; M, 0.5 hr; G1, 1.0 hr; the total cell time being 14.5 hr. A synchronization procedure using 50mm thymidine in a double block procedure was used to provide a method of obtaining a large number of cells in particular cell cycle phases, especially S and G2. This work was supported in part by U.S. Environmental Protection Agency Grant R-802516.  相似文献   

15.
Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165–170 nmol min–1 (mg protein)–1] were found in cells grown on acetate or β-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50–80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent K m of isocitrate lyase for d,l-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 μM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the V max nor the d,l-isocitrate K m of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum. Received: 10 October 1997 / Accepted: 16 January 1998  相似文献   

16.
Summary Rabbit antisera to sheep prolactin and bovine growth hormone were used in the indirect fluorescent antibody technique on cryostat sections of anterior pituitaries of sheep, ox, rats and mice. It is demonstrated that in sheep and ox prolactin and growth hormone are manufactured by different acidophilic pituitary cells. Though the antisera do not precipitate the analogous hormones of rats and mice in gel diffusion tests, evidence is given for the specificity of the cross-reaction of the antisera with the analogous murine hormones in situ as found with the fluorescent antibody technique.We are grateful to Dr. J. D. H. Homan of Organon, Oss (The Netherlands) for the supply of bovine growth hormone and for kindly giving us the information concerning this preparation.We should like to thank Dr. F. J. A. Prop for the prolactin assays, Dr. H. G. Kwa for providing the mouse pituitary tumours and Dr. L. M. Boot for the mouse pituitary isograft in the kidney, Mrs. J. J. Geiger-Koedijk for the conventional staining of pituitary sections, and Mr. J. van der Kamp for the photography.  相似文献   

17.
Summary Adenosinetriphosphatase has been histochemically demonstrated in the initiallobe cells and the central canal in its first round in the pre-testicular and testicular nephridia of the Indian leech Hirudinaria granulosa. The apical-lobe cells are positive in the pre-testicular and negative in the testicular nephridia. The functional significance of the enzyme at these sites has been discussed.I wish to express my gratitude to Dr. H. B. Tewari, under whose guidance the present work has been carried out. I am also indebted to Dr. M. L. Dhar, Director, Central Drug Research Institute, Lucknow; Dr. P. S. Krishnan, Professor of Biochemistry, University of Lucknow; and Dr. (Miss) Usha Gupta, Department of Pathology, University of Lucknow, for the hospitality which they have accorded me in their laboratories.  相似文献   

18.
In the Chinese hamster, 17 days, i.e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermatogonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. The following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i.e. newborn stem cells that still have to migrate away, mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

19.
Summary The free surface of epithelial cells of secretory organs (human placenta, lactating mammary gland of the rat, choroid plexus of man and rat) and of the accessory organs of the genital tract of the male rat is characterized by a plasmalemmal differentiation named glycocalyx or surface mucous coat. This structure is built up by filamentous or globular substructures.Two main ultrastructural types of the glyeocalyx were observed: 1) The filamentous type such as in the rat epididymis, which resembles the cat intestinal glyeocalyx (Ito, 1965) and that one of human transitional epithelium (Monis and Zambrano, 1968), and 2) The globular type, as observed in the lumen of the lactating mammary gland of the rat.Sialic acid was demonstrated histochemically in the luminal glyeocalyx of all organs studied. In addition, the glyeocalyx of acinar cells of the lactating mammary gland contains sulfate and phosphate groups which were identified by histochemical technics, using enzymatic digestion procedures, suggesting the chemical heterogeneity of this glyeocalyx.Present investigations follow the working hypothesis that the complex carbohydrates of glycocalyces become part of the product of activity of secreting cells.We thank Mr. Luis Iwakawa, Miss Silvia Falcón, Miss Elsa M. Orgnero for technical help, Miss Graciela Aliaga for secretarial assistance. Photography by Mr. H. Magnani. Dr. Hugo F. Carrer cooperated in the initial stages of this investigation.The authors acknowledge the use of the electron microscope of the Department of Pathology, Córdoba University Medical School, for which they thank Prof. E. Mosquera and Dr. E. Hliba. Dr. Hliba photographed picture number 4.  相似文献   

20.
Sheep testes undergo a dramatic rate of development with structural changes during pre-sexual maturity, including the proliferation and maturation of somatic niche cells and the initiation of spermatogenesis. To explore this complex process, 12,843 testicular cells from three males at pre-sexual maturity (three-month-old) were sequenced using the 10× Genomics ChromiumTM single-cell RNA-seq (scRNA-seq) technology. Nine testicular somatic cell types (Sertoli cells, myoid cells, monocytes, macrophages, Leydig cells, dendritic cells, endothelial cells, smooth muscle cells, and leukocytes) and an unknown cell cluster were observed. In particular, five male germ cell types (including two types of undifferentiated spermatogonia (Apale and Adark), primary spermatocytes, secondary spermatocytes, and sperm cells) were identified. Interestingly, Apale and Adark were found to be two distinct states of undifferentiated spermatogonia. Further analysis identified specific marker genes, including UCHL1, DDX4, SOHLH1, KITLG, and PCNA, in the germ cells at different states of differentiation. The study revealed significant changes in germline stem cells at pre-sexual maturation, paving the way to explore the candidate factors and pathways for the regulation of germ and somatic cells, and to provide us with opportunities for the establishment of livestock stem cell breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号