首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous mutants of Azotobacter vinelandii defective for glucose utilization were selected as resistant to 5-thio-D-glucose. Mutant strains AM2, AM38, and AM39 exhibited longer generation times than the wild type when grown on glucose. Mutant strain AM2 also exhibited an altered Km and Vmax for glucose uptake. During acetate-glucose diauxie, glucose utilization in the 5-thio-D-glucose-resistant mutants was subject to severe inhibition by acetate. These mutants did not exhibit the normal glucose phase of diauxie. Transport studies during diauxie indicated that glucose uptake was not induced in mutant strain AM2. However, increasing the glucose concentration from 25 to 200 mM relieved the severe acetate inhibition, and under these conditions the mutant strain AM2 exhibited normal diauxie. Revertants of mutant strain AM2 exhibited normal glucose and diauxie growth. The results are discussed in terms of a model for acetate regulation of glucose utilization in A. vinelandii.  相似文献   

2.
The growth curve of Azotobacter vinelandii was biphasic when the organism was grown in a medium containing a mixture of galactose and glucose. Galactose was the primary carbon source; glucose was also consumed, but the rate at which it was consumed was lower than the rate at which galactose was consumed during the first phase of growth. Metabolic pathways for both sugars were induced. Cell cultures exhibited a second lag period as galactose was depleted. The length of this lag phase varied from 2 to 10 h depending on the pregrowth history of the cells. The second log growth phase occurred at the expense of the remaining glucose in the medium and was accompanied by induction of the high-maximum rate of metabolism glucose-induced glucose permease and increases in the levels of glucose metabolic enzymes. The second lag phase of diauxie may have been due to the time required for induction of the glucose-induced glucose permease.  相似文献   

3.
K Tauchert  A Jahn    J Oelze 《Journal of bacteriology》1990,172(11):6447-6451
Batch cultures of Azotobacter vinelandii were inoculated with cells pregrown on either acetate or glucose. When they were subsequently grown on a mixture of acetate and glucose, typical diauxic growth was observed, with preferential uptake of acetate in the first and glucose in the second phase of growth. Extracts from acetate-pregrown cells exhibited high acetate kinase activity in the first phase of growth. This activity decreased and activities of the two glucose enzymes glucose 6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase increased in the second phase. Extracts from glucose-pregrown cells exhibited high initial activities of the two glucose enzymes, which decreased while acetate kinase activity increased in the first phase of growth. Again, in the second phase, activities of the two glucose enzymes increased and acetate kinase activity decreased. In any case, isocitrate dehydrogenase activity varied only slightly and unspecifically. The differences in enzyme activity and the constancy of isocitrate dehydrogenase were confirmed by experiments with either acetate- or glucose-limited chemostats. In chemostats in which both of the substrates were limiting, all of the enzymes displayed significant activities. Glucose 6-phosphate dehydrogenase activity was inhibited by acetyl coenzyme A and acetyl phosphate but not by acetate. It is proposed that diauxic growth is based on the control of enzymes involved in acetate or glucose dissimilation by which acetate or its metabolites control the expression and activity of glucose enzymes.  相似文献   

4.
Growth of Corynebacterium glutamicum on mixtures of the carbon sources glucose and acetate is shown to be distinct from growth on either substrate alone. The organism showed nondiauxic growth on media containing acetate-glucose mixtures and simultaneously metabolized these substrates. Compared to those for growth on acetate or glucose alone, the consumption rates of the individual substrates were reduced during acetate-glucose cometabolism, resulting in similar total carbon consumption rates for the three conditions. By (13)C-labeling experiments with subsequent nuclear magnetic resonance analyses in combination with metabolite balancing, the in vivo activities for pathways or single enzymes in the central metabolism of C. glutamicum were quantified for growth on acetate, on glucose, and on both carbon sources. The activity of the citric acid cycle was high on acetate, intermediate on acetate plus glucose, and low on glucose, corresponding to in vivo activities of citrate synthase of 413, 219, and 111 nmol. (mg of protein)(-1). min(-1), respectively. The citric acid cycle was replenished by carboxylation of phosphoenolpyruvate (PEP) and/or pyruvate (30 nmol. [mg of protein](-1). min(-1)) during growth on glucose. Although levels of PEP carboxylase and pyruvate carboxylase during growth on acetate were similar to those for growth on glucose, anaplerosis occurred solely by the glyoxylate cycle (99 nmol. [mg of protein](-1). min(-1)). Surprisingly, the anaplerotic function was fulfilled completely by the glyoxylate cycle (50 nmol. [mg of protein](-1). min(-1)) on glucose plus acetate also. Consistent with the predictions deduced from the metabolic flux analyses, a glyoxylate cycle-deficient mutant of C. glutamicum, constructed by targeted deletion of the isocitrate lyase and malate synthase genes, exhibited impaired growth on acetate-glucose mixtures.  相似文献   

5.
Abstract Bacillus sphaericus grew with increasing doubling times on acetate, gluconate, histidine, arginine and succinate as carbon and energy sources. When grown with both acetate and histidine, B. sphaericus used the former preferentially and diauxic growth was observed, although there was no detectable lag between the two growth phases. Histidase, the first enzyme of the histidine utilization pathway, was induced by histidine but not in the presence of acetate. In the absence of an alternative nitrogen source, B. sphaericus was unable to grow with acetate as carbon source and histidine as nitrogen source (presumably because of repression of histidase biosynthesis), although it could grow on histidine alone. Acetate also inhibited sporulation in B. sphaericus .  相似文献   

6.
Lactobacillus rhamnosus ATCC 7469 exhibited diauxie when grown in a medium containing both glucose and citrate as energy source. Glucose was used as the primary energy source during the glucose-citrate diauxie. Uptake of citrate was carried out by an inducible citrate transport system. The induction of citrate uptake system was repressed in the presence of glucose. This repression was reversible and mediated by cAMP.  相似文献   

7.
Lee TK  Lee WS 《Plant physiology》1996,110(2):465-470
Diauxic growth was observed in rice (Oryza sativa L.) suspension cells growing on acetate (10 mM) and glucose (10 mM). Cells used acetate during the first growth phase and the acetate level in the medium was rapidly decreased, whereas the level of glucose remained essentially unchanged. After acetate was depleted from the medium, cells started to use glucose, forming the second growth phase. It appears that uptake of [14C]glucose was repressed during the first growth phase and became active during the second growth phase. In contrast, uptake of [14C]acetate occurred actively throughout the diauxic growth. By further demonstrating the specific induction of isocitrate lyase (EC 4.1.3.1), a glyoxylate cycle enzyme, and hexokinase (EC 2.7.1.1), a glycolysis enzyme, during the first and second growth phases, respectively, it was clearly shown that rice cells use acetate first and do not use both carbon sources simultaneously. This kind of diauxic growth pattern has been observed in bacteria. To our knowledege, this study is the first report demonstrating the presence of diauxic growth in plant cells.  相似文献   

8.
The role of inducer exclusion in diauxic growth of Escherichia coli on glucose and melibiose was investigated. The amounts of glucose and melibiose in the culture medium were determined during the diauxie. Glucose was consumed during the first growth cycle of the diauxie, and melibiose was consumed during the second cycle. The addition of adenosine 3',5'-cyclic monophosphate to the culture medium released both transient and catabolite repressions on the melibiose operon by glucose. Biphasic growth without a transient lag phase was observed in the presence of adenosine 3',5'-cyclic monophosphate. Preferential utilization of glucose over melibiose was observed even under such conditions. Thus, it is clear that inducer exclusion alone is sufficient to ensure the preferential utilization of glucose over melibiose. Similar results were obtained from a glucose-lactose diauxie. Inducer exclusion itself was not affected by adenosine 3',5'-cyclic monophosphate.  相似文献   

9.
L-Asparaginase Synthesis by Erwinia aroideae   总被引:2,自引:2,他引:0       下载免费PDF全文
Maximum L-asparaginase activity was obtained when 1.0% lactose and 1.5% yeast extract were supplied as carbon and nitrogen sources, respectively. Glucose inhibited the enzyme formation. The diauxie phenomenon was observed with Erwinia aroideae NRRL B-138 grown in a medium containing glucose and lactose.  相似文献   

10.
Glucose-lactose diauxie in Escherichia coli   总被引:10,自引:3,他引:7  
Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed.  相似文献   

11.
Candida wickerhamii NRRL Y-2563 expressed beta-glucosidase activity (3 to 8 U/ml) constitutively when grown aerobically in complex medium containing either glycerol, succinate, xylose, galactose, or cellobiose as the carbon source. The addition of a high concentration of glucose (>75 g/liter) repressed beta-glucosidase expression (<0.3 U/ml); however, this yeast did produce beta-glucosidase when the initial glucose concentration was 相似文献   

12.
Citrate metabolism by Enterococcus faecium ET C9 and Enterococcus durans Ov 421 was studied as sole energy source and in presence of glucose or lactose. Both strains utilized citrate as the sole energy source. Enterococcus faecium ET C9 showed diauxic growth in the presence of a limiting concentration of glucose. Neither strain used citrate until glucose was fully metabolized. The strains showed co-metabolism of citrate and lactose. Lactate, acetate, formate, and flavour compounds (diacetyl, acetoin, and 2,3-butanediol) were detected in both strains. The highest production of flavour compounds was detected during growth of E. durans Ov 421 in media supplemented with citrate-glucose and citrate-lactose. Citrate lyase was inducible in both strains. Acetate kinase activities presented the highest values in LAPTc medium, with E. faecium ET C9 displaying a specific activity 2.4-fold higher than E. durans. The highest levels of alpha-acetolactate synthase specific activity were detected in E. durans grown in LAPTc+g, in accordance with the maximum production of flavour compounds detected in this medium. Diacetyl and acetoinreductases displayed lower specific activity values in the presence of citrate. Enterococcus faecium and E. durans displayed citrate lyase, acetate kinase, alpha-acetolactate synthase, and diacetyl and acetoin reductase activities. These enzymes are necessary for conversion of citrate to flavour compounds that are important in fermented dairy products.  相似文献   

13.
Diauxic growth was observed upon incubation of Agrobacterium tumefaciens 15955 on a mixture of succinate and mannopine as the carbon source. Diauxic growth was also observed when either fumarate or L-malate was mixed with mannopine. No diauxie was detectable when A. tumefaciens 15955 was grown on a mixture of mannopine and glucose, fructose, sucrose, or L-arabinose. Preferential utilization of succinate was observed in the initial growth phase of diauxie, whereas the final growth phase occurred at the expense of mannopine. Cells harvested during the initial growth phase exhibited a capacity for uptake of [14C]succinate but not of [14C] mannopine. A capacity for [14C]mannopine uptake was expressed during the final growth phase. Extracts from cells grown on a mixture of succinate and mannopine exhibited a low level of mannopine cyclase activity in the initial phase of diauxie. This activity increased substantially in the final phase of growth. Added succinate had no effect on the rate of [14C]mannopine uptake or mannopine cyclase activities of cells previously grown on mannopine. Diauxie was also observed during growth of strain 15955 on a mixture of succinate and octopine.  相似文献   

14.
Glyoxylate cycle in Mucor racemosus.   总被引:1,自引:0,他引:1       下载免费PDF全文
The dimorphic phycomycete Mucor racemosus was grown in media containing acetate, glutamate, and peptone as carbon sources. The component enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, were present under these conditions throughout the growth cycles. Highest specific activities for each enzyme were found in media with acetate as the carbon source. In an enriched peptone medium containing glucose, neither activity was detected until glucose was exhausted from the medium. Treatment of acetate-grown cells with glucose resulted in a rapid decline in the specific activities of both enzymes. The importance of this cycle in acetate-grown cells was indicated by the ability of itaconic acid (100 mM) to inhibit the growth of M. racemosus in acetate but not glutamate media. Itaconate was also shown to be a potent inhibitor of isocitrate lyase activity in vitro.  相似文献   

15.
Cells of Escherichia coli increase greatly the synthesis of a small cytoplasmic protein as soon as the cell growth rate falls below the maximal growth rate supported by the medium, regardless of the condition inhibiting growth. The gene, designated uspA (universal stress protein A), encoding this protein has been cloned and mapped, and its nucleotide sequence has been determined (T. Nyström and F.C. Neidhardt, Mol. Microbiol. 6:3187-3198, 1992). We now report the isolation of an E. coli mutant defective in UspA synthesis because of insertional inactivation of the corresponding gene. Analysis of such a mutant demonstrated that it grows at a rate indistinguishable from that of the isogenic parent but lags significantly when diluted into fresh medium, regardless of the carbon source included. In addition, the mutant exhibits a diauxic type of growth when grown on certain single substrates, such as glucose and gluconate. This growth phenotype was found to be the result of abnormal metabolism of the carbon source (e.g., glucose) accompanied by excretion into the medium of acetate. The diauxic type of growth may be attributed to the failure of cells to form acetyl coenzyme A synthetase and to form isocitrate lyase and malate synthase of the glyoxalate bypass, needed for the assimilation of the produced acetate, until glucose or gluconate has been completely exhausted. The uspA mutant appears to dissimilate glucose at an elevated rate that is not commensurate with its biosynthetic processes. These results suggest that the role of protein UspA may be to modulate and reorganize the flow of carbon in the central metabolic pathways of E. coli during growth arrest.  相似文献   

16.
Thiobacillus A2 grew on a number of organic acids, pentoses, hexoses and -linked disaccharides, but not on -linked disaccharides or galactosides. Growth was slow on glucose, although fast-growing strains were selectively isolated. Additive growth rates occurred on glucose and galactose; growth on glucose with fructose, pyruvate or gluconate was biphasic rather than diauxic; fructose was used preferentially over glucose; slow growth on glucose was accelerated by some disaccharides; growth on acetate, fumarate or succinate with glucose gave diauxic growth with preferential use of the acid and repression of glucose incorporation. Acetate and succinate tended to be used preferentially even with cultures grown on them in mixture with fructose or sucrose.  相似文献   

17.
Candida wickerhamii NRRL Y-2563 expressed β-glucosidase activity (3 to 8 U/ml) constitutively when grown aerobically in complex medium containing either glycerol, succinate, xylose, galactose, or cellobiose as the carbon source. The addition of a high concentration of glucose (>75 g/liter) repressed β-glucosidase expression (<0.3 U/ml); however, this yeast did produce β-glucosidase when the initial glucose concentration was ≤50 g/liter. When grown aerobically in medium containing glucose plus the above-listed carbon sources, diauxic utilization of the carbon source was observed and the expression of β-glucosidase was glucose repressed. Surprisingly, glucose repression did not occur when the cells were grown anaerobically. When grown anaerobically in medium containing 100 g of glucose per liter, C. wickerhamii produced 6 to 9 U of enzyme per ml and did not demonstrate diauxic utilization of glucose-cellobiose mixtures. To our knowledge, this is the first report of apparent derepression of a glucose-repressed enzyme by anaerobiosis.  相似文献   

18.
An anaerobic fungus (strain R1) resembling Neocallimastix spp. was isolated from sheep rumen. When grown on defined medium, the isolate utilized a wide range of polysaccharides and disaccharides, but of the eight monosaccharides tested only fructose, glucose, and xylose supported growth. The organism had doubling times of 5.56 h on glucose and 6.67 h on xylose, and in each case fermentation resulted in production of formate, acetate, lactate, and ethanol. During active growth, formate was a reliable indicator of fungal biomass. Growth on a medium containing glucose and xylose resulted in a doubling time of 8.70 h, but diauxic growth did not occur since both sugars were utilized simultaneously. The optimum temperature for zoospore and immature plant development was 39 degrees C, and no development occurred below 33 degrees C or above 41 degrees C.  相似文献   

19.
Acetate as the major by-product in industrial-scale bioprocesses with Escherichia coli is found to decrease process efficiency as well as to be toxic to cells, which has several effects like a significant induction of cellular stress responses. However, the underlying phenomena are poorly explored. Therefore, we studied time-resolved population heterogeneity of the E. coli growth reporter strain MG1655/pGS20PrrnBGFPAAV expressing destabilized green fluorescent protein during batch growth on acetate and glucose as sole carbon sources. Additionally, we applied five fluorescent stains targeting different cellular properties (viability as well as metabolic and respiratory activity). Quantitative analysis of flow cytometry data verified that bacterial populations in the bioreactor are more heterogeneous in growth as well as stronger metabolically challenged during growth on acetate as sole carbon source, compared to growth on glucose or acetate after diauxic shift. Interestingly, with acetate as sole carbon source, significant subpopulations were found with some cells that seem to be more robust than the rest of the population. In conclusion, following batch cultures population heterogeneity was evident in all measured parameters. Our approach enabled a deeper study of heterogeneity during growth on the favored substrate glucose as well as on the toxic by-product acetate. Using a combination of activity fluorescent dyes proved to be an accurate and fast alternative as well as a supplement to the use of a reporter strain. However, the choice of combination of stains should be well considered depending on which population traits to aim for.  相似文献   

20.
It has been reported that suspension-cultured rice cells grownon mixed carbon sources of glucose (Glc) and acetate exhibiteddiauxic growth in which acetate was the preferred carbon source(Lee and Lee 1996). Carrot (Daucus carota L.) suspension cells,showing a diauxic growth very similar to that of rice cells,were used to delineate the mechanisms underlying this preferentialuse of acetate over Glc. Uptakes of both Glc and 3-O-methylglucose(3-OMG), a non-metabolizable Glc analogue, were similarly inhibitedwhen acetate or butylate, weak acids which are capable of transportingprotons into the cytosol, were present in the uptake assay mixturecontaining cells harvested during the Glc-utilizing second growthphase. Inhibition of Glc uptake by these weak acids was similarwhen equivalent experiments were carried out with isolated plasmamembranes. It was further shown that Glc uptake, which requiresa proper proton gradient across the plasma membranes, was inhibitedduring the first growth phase by acetate-mediated alkalizationof growth medium and/or simultaneous acidification of cytosol.This study strongly suggests that Glc utilization in plant cellsis inhibited by co-presenting carbon source(s) which can alterthe proton gradient across the plasma membrane. (Received April 1, 1999; Accepted July 23, 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号