首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Recessive mutations in the slyD (sensitivity to ly sis) gene were isolated by selecting for survival after induction of the cloned lysis gene E of bacteriophage φX174 [1]. The slyD mutation, transduced into the normal φX174 host, Escherichia coli C, confers an absolute block on the plaque-forming ability of the wild-type phage, indicating that slyD is required for E function. slyD encodes a protein with 196 residues. A segment corresponding to the first 142 residues of the predicted SlyD protein has significant similarity throughout its length to the FKBP family of peptidyl-prolyl cis-trans isomerases, or rotamases. The C-terminal 46 codons of slyD encode a remarkable histidine-rich peptide which is a metal-binding domain [2]. This sequence is dispensable for slyD function in E -mediated lysis. Although there is no obvious phenotype associated with the slyD genotype other than the resistance to E -mediated lysis, overexpression of slyD causes cells to filament and to increase significantly in diameter. Mutations in φX174 can restore the plaque-forming ability of the phage on a slyD host. These pos ( p lates on s lyD) mutants plate on E. coli C wild-type and slyD . A model for SlyD involvement in E function and the role of SlyD in the cell is discussed.  相似文献   

2.
The behavior of the temperature-sensitive, penicillin-tolerant Escherichia coli mutant VC44 to endogenously induced autolysis by the bacteriophage phi X174 gene E product (gpE) was investigated. Expression of the cloned phi X174 lysis gene showed that cultures of strain VC44 grown at the restricted temperature were fully sensitive to endogenously induced autolysis. The results revealed that the modes of E. coli lysis induction by gpE and by penicillin differ and that the trigger mechanisms for autolysis depend greatly on the specific inducer used.  相似文献   

3.
Lytic action of cloned phi X174 gene E.   总被引:17,自引:2,他引:15       下载免费PDF全文
The phi X174 lysis gene E was placed under control of the lac promoter by cloning into the multicopy plasmid pBH20. Other phi X174 gene sequences were removed by nuclease digestion. Expression of gene E was shown to be necessary and sufficient to produce lysis phenomena exhibited by infection with intact phage. Lysis, its inhibition by MgSO4 and spermine, its progression through a spheroplasting stage, and its dependence on an early chloramphenicol-sensitive step were reproduced in clones induced for expression of the E gene product. Escherichia coli clones carrying the E gene not under lac control, and clones under lac control but only minimally induced for gene E expression, exhibited morphological aberrations consistent with the view that the mechanism by which gene E mediates cell lysis is related to host cell division processes.  相似文献   

4.
U Blsi  R Young    W Lubitz 《Journal of virology》1988,62(11):4362-4364
Gene K of bacteriophage phi X174 was cloned, and its gene product was localized in the cell envelope of Escherichia coli. Compared with the sole expression of the phi X174 lysis gene E, the simultaneous expression of the K and E genes had no effect on scheduling of cell lysis. Therefore, a direct interaction of proteins E and K could be excluded. In contrast, phi X174 infection of a host carrying a plasmid expressing gene K resulted in a delayed lysis and an apparent increase in phage titer.  相似文献   

5.
slyD encodes a 196 amino acid polypeptide that is a member of the FKBP family of cis–trans peptidyl–prolyl isomerases (PPIases). slyD mutations affect plaque formation by the phage φX174 by blocking the action of the phage lysis protein E. Here we describe the selection of a set of spontaneous slyD mutations conferring resistance to the expression of gene E from a plasmid. These mutations occur disproportionately in residues of SlyD that, based on the structure of the prototype mammalian FKBP12, make ligand contacts with immunosuppressing drug molecules or are conserved in other FKBP proteins. A wide variation in the plating efficiency of φX174 on these E  R strains is observed, relative to the parental, indicating that these alleles differ widely in residual SlyD activity. Moreover, it is found that slyD mutations cause significant growth rate defects in Escherichia coli B and C backgrounds. Finally, overexpression of slyD causes filamentation of the host. Thus, among the FKBP genes found in organisms across the evolutionary spectrum, slyD is unique in having three distinct drug-independent phenotypes.  相似文献   

6.
Escherichia coli VC30 is a temperature-sensitive mutant which is defective in autolysis. Strain VC30 lyses at 30 degrees C when treated with beta-lactam antibiotics or D-cycloserine or when deprived of diaminiopimelic acid. The same treatments inhibit growth of the mutant at 42 degrees C but do not cause lysis. Strain VC30 was used here to investigate the mechanism of host cell lysis induced by bacteriophage phi X 174. Strain VC30 was transformed with plasmid pUH12, which carries the cloned lysis gene (gene E) of phage phi X174 under the control of the lac operator-promoter, and with plasmid pMC7, which encodes the lac repressor to keep the E gene silent. Infection of strain VC30(pUH12)(pMC7) with phage phi X174 culminated in lysis at 30 degrees C. At 42 degrees C, intracellular phage development was normal, but lysis did not occur unless a temperature downshift to 30 degrees C was imposed. Similarly, induction of the cloned phi X174 gene E with isopropyl-beta-D-thiogalactoside resulted in lysis at 30 degrees C but not at 42 degrees C. Temperature downshift of the induced culture to 30 degrees C resulted in lysis even in the presence of chloramphenicol. These results indicate that host cell lysis by phage phi X174 is dependent on a functional cellular autolytic enzyme system.  相似文献   

7.
Summary Lytic activity of the X174E (lysis) protein had previously been localized to the amino terminal 51 amino acids (a.a.) of the molecule (Blasi and Lubitz 1985). This E gene lytic activity has here been further localized to the amino terminal 29 a.a., a region of the protein which is thought to just span the cell membrane (Young and Young 1982). X174 E gene fusions to both the lacZ gene and the chloramphenicol acetyl transferase (CAT) gene resulted in fusion proteins with lytic activity. Fusion to a third protein, trpE, did not result in lytic activity. These results support a model of oligomerization of the X174 E protein for lytic activity since both -galactosidase and CAT exist as tetramers in their native state. A difference in the composition of the charged amino acids at the cytoplasmic boundary between the various fusion proteins could also account for these results, since these amino acids may play a role in proper anchoring of the E protein in the cell membrane. In a spontaneous E gene mutant, which introduces a proline residue at position 9 of the E protein, lytic activity of the E protein was decreased, but not abolished. The presence of the helix-breaking proline at this position may interfere with insertion of the lysis protein into the cell membrane, leading to the decreased functional activity of the protein.  相似文献   

8.
Most bacteriophages abruptly terminate their vegetative cycle by causing lysis of the host cell. The ssDNA phage phi X174 uses a single lysis gene, E, encoding a 91-amino-acid membrane protein that causes lysis of Escherichia coli by inhibiting MraY, a conserved enzyme of murein biosynthesis. Recessive mutations in the host gene slyD (sensitivity to lysis) absolutely block E-mediated lysis and phi X174 plaque formation. The slyD gene encodes a FKBP-type peptidyl-prolyl cis-trans isomerase (PPIase). To investigate the molecular basis of this unique FKBP-dependence, spontaneous plaque-forming mutants of phi X174 were isolated on a slyD lawn. All of these Epos ('plates on slyD') suppressors encode proteins with either a R3H or L19F change. The double mutant was also isolated and generated the largest plaques on the slyD lawn. A c-myc epitope tag sequence was incorporated into the parental E and Epos genes without effect on lytic function. Western blots and pulse-chase labelling experiments showed that both Epos and E are highly unstable in a slyD background; however, Epos is synthesized at a higher rate, allowing a lysis-sufficient level of Epos to accumulate. Our results indicate that SlyD is required for stabilizing the E protein and allowing it to accumulate to the levels required to exert its lytic effect. These data are discussed in terms of a model for the specific role of the SlyD PPIase in E folding, and of the use of the very strict SlyD- dependence phenotype for identifying elements of PPIase selectivity.  相似文献   

9.
10.
Abstract: As a tool for determining the topology of the small, 91-amino acid ΦX174 lysis protein E within the envelope complex of Escherichia coli , a lysis active fusion of protein E with streptavidin (E-FXa-StrpA) was used. The E-FXa-StrpA fusion protein was visualised using immune electron microscopy with gold-conjugated anti-streptavidin antibodies within the envelope complex in different orientations. At the distinct areas of lysis characteristic for protein E, the C-terminal end of the fusion protein was detected at the surface of the outer membrane, whereas at other areas the C-terminal portion of the protein was located at the cytoplasmic side of the inner membrane. These results suggest that a conformational change of protein E is necessary to induce the lysis process, an assumption supported by proteinase K protection studies. The immune electron microscopic data and the proteinase K accessibility studies of the E-FXa-StrA fusion protein were used for the working model of the E-mediated lysis divided into three phases: phase 1 is characterised by integration of protein E into the inner membrane without a cytoplasmic status in a conformation with its C-terminal part facing the cytoplasmic side; phase 2 is characterised by a conformational change of the protein transferring the C-terminus across the inner membrane; phase 3 is characterised by a fusion of the inner and outer membranes and is associated with a transfer of the C-terminal domain of protein E towards the surface of the outer membrane of E. coli.  相似文献   

11.
ΦX174 lysis protein E-mediated lysis of Escherichia coli is characterized by a protein E-specific fusion of the inner and outer membrane and formation of a transmembrane tunnel structure. In order to understand the fusion process, the topology of protein E within the envelope complex of E. coli was investigated. Proteinase K protection studies showed that, during the time course of protein E-mediated lysis process, more of the fusion protein E-FXa-streptavidin gradually became accessible to the protease at the cell surface. These observations postulate a conformational change in protein E during induction of the lysis process by movement of the C-terminal end of the protein throughout the envelope complex from the inner side to the outer side spanning the entire pore and fusing the inner and outer membranes at distinct areas. The initiation mechanism for such a conformational change could be the cis–trans isomerization of proline residues within α-helical membrane-spanning segments. Conversion of proline 21, presumed to be in the membrane-embedded α-helix of protein E, to alanine, glycine, serine and valine, respectively, resulted in lysis-negative E mutant proteins. Proteinase K accessibility studies using streptavidin as a reporter fused to the P21G mutant protein showed that the C-terminal part of the fusion protein is not translocated to the outer side of the membrane, suggesting that this proline residue is essential for the correct folding of protein E within the cell wall complex of E. coli . Oligomerization of protein P21G-StrpA was not disturbed.  相似文献   

12.
Energetic and permeability properties of Escherichia coli cells were determined prior to and during lysis caused by expression of the cloned gene E of bacteriophage phi X174. Before onset of cell lysis the transmembrane gradients for K+, Na+ or Mg2+/ions, the level of ATP and the membrane potential, were unaffected. All these parameters changed simultaneously at the time of lysis onset, as monitored by measurements of culture turbidity as well as by determining the various specifications over a period of 1 min. During cell lysis chromosomal DNA was fragmented whereas plasmid DNA was liberated in its intact supercoiled form. Cytoplasmic constituents were released almost entirely, as indicated by the activity of beta-galactosidase in the supernatant fraction of protein-E-lysed cells. Periplasmic enzymes were only found in limited amounts in the cell supernatant and most remained associated with the cell ghosts. Such ghosts exhibited no gross cell damage or morphological alterations when compared with intact E. coli by light microscopy. All parameters investigated indicated that protein-E-mediated lysis of E. coli is caused by the formation of a transmembrane tunnel structure through the envelope complex of the bacterium.  相似文献   

13.
U Blsi  K Nam  W Lubitz    R Young 《Journal of bacteriology》1990,172(10):5617-5623
The lysis gene E of bacteriophage phi X174 is entirely embedded in gene D. Expression studies of genes D and E in Escherichia coli minicells and lysis times obtained in the presence or absence of D translation showed that the simultaneous expression of gene D does not affect protein E production. Thus, unlike other overlapping gene pairs, gene E expression is independent from the upstream translation of gene D. lacZ fusion studies and primer extension inhibition analysis (toeprinting) revealed an intrinsically weak E ribosome-binding site, which seems to be the major factor determining the low expression rate of the gene and thus proper scheduling of cell lysis.  相似文献   

14.
Abstract The genomes of DNA phage ΦX174 and of RNA phage MS2 each encode a single lysis protein, E protein and L protein, respectively. Based on the known DNA and protein sequences, and with the aid of structural predictions of the proteins, a chimeric gene was constructed. The resulting protein was composed of the N-terminal sequence of E protein and the C-terminal sequence of L protein. The truncated E and L polypeptides used in this construction were functionally inactive. However, the chimeric gene product had very high lysis-inducing activity. This construction is an example which could be extended to the engineering of other lysis proteins designed with specific biotechnological processes in mind.  相似文献   

15.
Abstract By a comparison of the rate øX174 gene E product (gpE)-induced autolysis of Escherichia coli RM4101 and its autolysis deficient mutant strains RK232, RK238 and RK316, it was shown that gpE-induced autolysis differs from autolysis induced by EDTA or moenomycin. Subclones of these strains which could no longer be lysed by gpE can be lysed by EDTA shock treatment or moenomycin at almost normal rates. GpE seems to induce only partially the activity of the autolytic system of E. coli.  相似文献   

16.
Y Mano  H Sakai    T Komano 《Journal of virology》1979,30(3):650-656
phi X174am3trD, a temperature-resistant mutant of bacteriophage phi X174am3, exhibited a reduced ability to grow in a dnaP mutant, Escherichia coli KM107, at the restrictive temperature (43 degrees C). Under conditions at which the dnaP gene function was inactivated, the amount and the rate of phi X174am3trD DNA synthesis were reduced. The efficiency of phage attachment to E. coli KM107 at 43 degrees C was the same as to the parental strain, E. coli KD4301, but phage eclipse and phage DNA penetration were inhibited in E. coli KM107 at 43 degrees C. It is suggested that the dnaP gene product, which is necessary for the initiation of host DNA replication, participates in the conversion of attached phages to eclipsed particles and in phage DNA penetration in vivo in normal infection.  相似文献   

17.
Abstract Expression of the cloned PhiX174 gene E causes lysis of the Gram-negative bacterium Escherichia coli , which led to the proposal that a two-membrane system is necessary for the protein E lysis function. Gene E was cloned in an E. coli/Bacillus subtilis shuttle vector and expressed in the Gram-positive bacterium Staphylococcus carnosus TM300. Regulated gene E expression had a lethal effect on S. carnosus ; however, no lysis was detected, lending support to the hypothesis.  相似文献   

18.
Phi X174 protein E-mediated lysis of Escherichia coli   总被引:6,自引:0,他引:6  
A Witte  U Bl?si  G Halfmann  M Szostak  G Wanner  W Lubitz 《Biochimie》1990,72(2-3):191-200
Bacteriophage PhiX174 encodes a single lysis gene, E, the function of which is necessary and sufficient to induce lysis of Escherichia coli. Here we present a novel model for E-lysis: physiological, genetic and biochemical data are presented which suggest that a transmembrane tunnel penetrating the inner and outer membrane is formed during the lytic action of protein E. Moreover, using high magnification scanning and transmission electron microscopy in this study, it was possible to visualize the transmembrane lysis structure directly.  相似文献   

19.
Lysis of Escherichia coli by the cloned E protein of bacteriophage phi X174 was more rapid than expected when bacteria were shifted from 30 to 42 degrees C at the time of E induction. Since such treatment also induces the heat shock response, we investigated the effect of heat shock proteins on lysis. An rpoH mutant was more sensitive to lysis by E, but a secondary suppressor mutation restored lysis resistance to parental levels, which suggests that the sigma 32 subunit itself did not directly increase lysis resistance. At 30 degrees C, mutants in five heat shock genes (dnaK, dnaJ, groEL, groES, and grpE) were more sensitive to lysis than were their wild-type parents. The magnitude of lysis sensitivity varied with mutation and strain background, with dnaK, dnaJ, and groES mutants consistently exhibiting the greatest sensitivities. Extended protection against lysis occurred when overproduction of heat shock proteins was induced artificially in cells that contained a plasmid with the rpoH+ gene under control of the tac promoter. This protective effect was completely abolished by mutations in dnaK, dnaJ, or groES but not by grpE or groEL mutations. Altered membrane behavior probably explains the contradiction whereby an actual temperature shift sensitized cells to lysis, but production of heat shock proteins exhibited protective effects. The results demonstrate that E-induced lysis can be divided into two distinct operations which may now be studied separately. They also emphasize a role for heat shock proteins under non-heat-shock conditions and suggest cautious interpretation of lysis phenomena in systems where E protein production is under control of a temperature-sensitive repressor.  相似文献   

20.
The expression of cloned bacteriophage phi X174 lysis gene E was analyzed in minicells of Escherichia coli using two-dimensional gel electrophoresis. Beside the 10-11-kDa protein-E, at least two additional protein bands were detected, associated with the inner membrane, which showed the same isoelectric point as E. To clarify whether these proteins were E-specific, two different antibodies directed against a beta-galactosidase-E' hybrid protein and a synthetic oligopeptide corresponding to the C-terminal end of protein-E were raised. Immunoadsorption studies with anti-peptide-specific antibodies resulted in the detection of protein-E as well as in the detection of proteins of higher molecular weight. Two of these protein bands were positively recognized by anti beta-galactosidase-E' antibodies. The latter protein bands had the same molecular weight as the putative protein-E bands detected by two-dimensional gel electrophoresis indicating that these bands represent protein-E-specific oligomers. These data support the idea that an E-specific oligomeric structure penetrating the inner and outer membrane of E. coli is formed during the lytic action of protein-E.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号