首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although the degradation of cellular or endocytosed proteins comprises the normal function of lysosomal proteinases, these enzymes were also detected extracellularly during diseases such as atherosclerosis. Since lysosomal cysteine cathepsins were demonstrated to transform native LDL particles into a proatherogenic type, the following study was undertaken to characterize the modification of LDL particles and the degradation of apolipoprotein B-100 in more detail. LDL was incubated with cathepsins B, F, K, L, S, and V at pH 5.5 and under physiological conditions (pH 7.4) for 2 h to mimic conditions of limited proteolysis. Gel electrophoretic analysis of the degradation products revealed that cathepsin-mediated proteolysis of apolipoprotein B-100 is a fast process carried out by all enzymes at pH 5.5, and by cathepsin S also at pH 7.4. Electron microscopic analysis showed that cathepsin-mediated degradation of apolipoprotein B-100 rendered LDL particles fusion-competent compared to controls. N-Terminal sequencing of cathepsin cleavage fragments from apolipoprotein B-100 revealed an abundance of enzyme-specific cleavage sites located in almost all structurally and functionally essential regions. Since the cleavage sites superimpose well with results from substrate specificity studies, they might be useful for the development of cathepsin-specific inhibitors and substrates.  相似文献   

2.
The synthesis and secretion of apolipoprotein (apo) B-100 have been studied in a human hepatoblastoma cell line, the Hep G2 cells. Pulse-chase analysis showed that apoB-100 was not quantitatively recovered in the culture medium. To reveal the intracellular degradation of apoB-100 prior to secretion, cells were incubated with 1 microgram/ml Brefeldin A (BFA) which impeded protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus and the fate of apoB-100 retained in the cells was traced at 37 degrees C. A significant amount of intracellular apoB-100 (40-60%/h) was degraded during the chase period, whereas apoA-1 remained intact. ApoB-100 degradation was temperature dependent, no degradation was observed below 20 degrees C. This degradation process was not inhibited by chloroquine, leupeptin, pepstatin, and chymostatin, suggesting that lysosomal proteases were not involved and that apoB-100 was degraded in a pre-Golgi compartment which is either part of, or closely related to, the ER. Preincubation of cells with low density lipoproteins (LDL) induced a 22-32% increase in the degradation of apoB-100. This result raised the possibility that secretion of apoB-100 might be regulated through the intracellular degradation of apoB-100. These results suggest the existence of the degradation pathway for apoB-100 in a pre-Golgi compartment and an unique regulatory mechanism for apoB-100 secretion.  相似文献   

3.
The structural relationship between apolipoprotein B-100 (apo-B-100) and apolipoprotein B-48 (apo-B-48) has not been elucidated. A peptide fragment (MDB-18) of approximately 6 kDa was isolated from a tryptic digest of apo-B-100. The sequence of the first 22 amino acids of MDB-18 was determined by Edman degradation. A 15-residue peptide corresponding to this sequence was synthesized by the solid-phase method and was utilized to develop a sequence-specific polyclonal antibody. On immunoblot analysis, the antibody recognized both intact apo-B-100 and apo-B-48. In addition, preincubating the antibody with the synthetic peptide abolished the recognition of both apo-B-100 and apo-B-48. These data are interpreted as indicating that there is an amino acid sequence homology between apo-B-100 and apo-B-48. Since the MDB-18 peptide is located in the carboxyl region of the B-100 molecule, we propose apo-B-100 and apo-B-48 share a common carboxyl region sequence.  相似文献   

4.
Distribution of lipid-binding regions in human apolipoprotein B-100   总被引:3,自引:0,他引:3  
The distribution of lipid-binding regions of human apolipoprotein B-100 has been investigated by recombining proteolytic fragments of B-100 with lipids and characterizing the lipid-bound fragments by peptide mapping, amino acid sequencing, and immunoblotting. Fragments of B-100 were generated by digestion of low-density lipoproteins (LDL) in the presence of sodium decyl sulfate with either Staphylococcus aureus V8 protease, pancreatic elastase, or chymotrypsin. Particles with electron microscopic appearance of native lipoproteins formed spontaneously when detergent was removed by dialysis from enzyme digests containing fragments of B-100 and endogenous lipids, or from incubation mixtures of delipidated B-100 fragments mixed with microemulsions of exogenous lipids (cholesteryl oleate and egg phosphatidylcholine). Fractionation of the recombinant particles by isopycnic or density gradient ultracentrifugation yielded complexes similar to native LDL with respect to shape, diameter, electrophoretic mobility, and surface and core compositions. Circular dichroic spectra of these particles showed helicity similar to LDL but a somewhat decreased content of beta-structure. Most of the fragments of B-100 were capable of binding to lipids; 12 were identified by direct sequence analysis and 14 by reaction with antisera against specific sequences within B-100. Our results indicate that lipid-binding regions of B-100 are widely distributed within the protein molecule and that proteolytic fragments derived from B-100 can reassociate in vitro with lipids to form LDL-like particles.  相似文献   

5.
Human plasma low density lipoproteins (LDL) contain one major apoprotein of apparent Mr = 550,000 designated apolipoprotein B-100 (apo-B-100) and in some LDL preparations, minor components termed apo-B-74 (Mr = 410,000) and apo-B-26 (Mr = 145,000). The structural and metabolic relationships among these LDL apoproteins remain obscure. In the present study, we show that the mixing of proteolytic inhibitors with blood at the moment of collection prevents the appearance of apo-B-74 and -26 in plasma LDL indicating that these peptides are derived by proteolytic degradation of apo-B-100. In order to simulate the degradation in vitro, LDL were digested with plasmin, trypsin, chymotrypsin, thrombin, and tissue and plasma kallikreins and the degradation products analyzed by polyacrylamide gradient gel electrophoresis. While plasmin, trypsin, and chymotrypsin caused extensive degradation of apo-B-100, thrombin, and tissue and plasma kallikreins generated limited cleavage patterns. LDL digested with thrombin contained stoichiometric amounts of two peptides with apparent Mr = 385,000 and 170,000. Mixing experiments showed that the thrombin-derived peptides of apo-B-100 did not co-migrate with apo-B-74 and B-26 during electrophoresis indicating that these peptides were different. In contrast, LDL digested with kallikrein contained stoichiometric amounts of two peptides with apparent molecular weights identical to apo-B-74 and -26. Together, the above results indicate that apo-B-74 and -26 are degradation products of apo-B-100 and are not produced by the action of thrombin. Whether the expression of a kallikrein-like activity in vivo accounts for the specific degradation of LDL B-100 to yield LDL B-74 and -26 remains to be determined.  相似文献   

6.
Human apolipoprotein B-100 heparin-binding sites   总被引:13,自引:0,他引:13  
Seven distinct heparin-binding sites have been demonstrated on human apolipoprotein (apo) B-100 by using a combination of digestion with cyanogen bromide or Staphylococcus aureus V-8 protease and heparin-Sepharose affinity chromatography. Based on fragment analysis, the approximate boundaries of the seven binding sites are as follows: site A, residues 5-99; site B, residues 205-279; site C, residues 875-932; site D, residues 2016-2151; site E, residues 3134-3209; site F, 3356-3489; and site G, residues 3659-3719. In sites E and F, two short regions enriched in basic amino acids have been identified, and it is likely that they are responsible for a major portion of the heparin-binding properties of these sites. The relative binding affinity of each of the seven sites was estimated in two ways. First, the affinity was assessed in a ligand blot assay using a 125I-labeled high-reactive heparin subfraction. Second, apoB-100 fragments generated by cyanogen bromide or S. aureus V-8 protease were separated into low- and high-affinity fractions by gradient salt elution of a heparin-Sepharose column. The distribution of the seven binding sites in the two fractions was determined in an immunoblotting assay using antibodies specific to each site, i.e. antibodies raised against synthetic peptide sequences found within each of the seven sites. The results of these two approaches demonstrate that site E and, to a somewhat lesser extent, site F bind to heparin with the highest affinity. Based on the analogy with apoE, in which the high-affinity heparin-binding site coincides with the domain of the protein that interacts with apoB,E (low density lipoprotein) receptors, the results of this study indicate that site E and site F, either singly or in combination, might constitute the receptor binding domain of apoB-100.  相似文献   

7.
Apolipoprotein B-48 (apoB48) is synthesized in the small intestine and becomes a component of chylomicrons (CM). Apolipoprotein B-100 (apoB100) is synthesized in liver and becomes a component of both very low density lipoprotein (VLDL) and low density lipoprotein (LDL). To evaluate whether apoB100 is present in the human small intestine, we performed immunohistochemical staining using anti-apoB100 monoclonal antibody (mAb). Jejunal samples stained positive and the granular staining was noted in the supranuclear region of epithelial cells. We also identified apoB100 expression in the epithelial cells by immunoblotting and dot-blotting of PCR-amplified cDNA. In order to exclude submucosal stroma contaminated with blood, we used isolated epithelium from human small intestine obtained by a crypt isolation technique. The results indicate that not only apoB48, but also apoB100 are expressed in human small intestine epithelium. The expression of apoB100 suggests that the dietary VLDL may be synthesized in human small intestine epithelium and converted into LDL, which might play an important role in atherosclerosis.  相似文献   

8.
Recent studies showed correlation between increased serum apolipoprotein B-100 (apoB-100) level and Alzheimer's disease. To reveal the possible role of apoB-100 in neurodegeneration, we analyzed the serum lipoprotein and cerebral protein profiles, amyloid plaque formation, apoptosis and brain morphology of transgenic mice overexpressing the human apoB-100 protein. Serum lipoprotein profile showed significant increase of the plasma triglyceride level, while no alteration in total cholesterol was detected. The antibody microarray experiment revealed upregulation of several cytoskeletal, neuronal proteins and proteins that belong to the mitogen activated protein kinase pathway, indicating active apoptosis in the brain. Histochemical experiments showed formation of amyloid plaques and extensive neuronal death. Biochemical changes severely affected brain morphology; a dramatic genotype-dependent enlargement of the third and lateral ventricles in the brain was detected. On the basis of earlier and present results, we conclude that overexpressed human apoB-100 protein significantly increases the level of serum lipids (triglyceride upon normal chow diet and cholesterol on cholesterol-rich diet) which leads to cerebrovascular lesions and subsequently induces apoptosis and neurodegeneration.  相似文献   

9.
The asparagine-linked sugar chains of human apolipoprotein B-100 were liberated from the polypeptide portion by hydrazinolysis followed by N-acetylation and NaB3H4 reduction. Their structures were elucidated by sequential exoglycosidase digestion in combination with methylation analysis after fractionation by paper electrophoresis and gel permeation chromatography. One neutral and two acidic fractions were obtained by paper electrophoresis in a molar ratio of 7:8:5. The neutral fraction contained high-mannose type oligosaccharides consisting of Man5GlcNAc2 to Man9GlcNAc2. The acidic fractions contained monosialylated and disialylated biantennary complex type oligosaccharides. As minor components in the monosialylated fraction, biantennary complex-type oligosaccharides which were absent one terminal galactose residue, monoantennary complex type, and hybrid type oligosaccharides were detected. Apolipoprotein B-100 was calculated to contain 5-6 mol of high-mannose type and 8-10 mol of complex type oligosaccharides per mole protein.  相似文献   

10.
The complete cDNA and amino acid sequence of human apolipoprotein B-100   总被引:15,自引:0,他引:15  
We have determined the complete sequence of apolipoprotein (apo) B-100 cDNA. It is 14.1 kilobases in length and codes for a 4563-amino acid protein, including a 27-amino acid signal peptide and a 4536-amino acid mature protein. Further, we identified 2366 residues of apoB-100 by direct sequence analysis of apoB-100 tryptic peptides. The mature peptide is characterized by high hydrophobicity (0.916 kcal/residue) and predicted beta-sheet content (21%). Dot matrix analysis revealed the presence of many long internal repeats in apoB-100. The mature peptide contains 25 cysteine residues, 12 of which are in the N-terminal 500 residues. Twenty potential N-linked glycosylation sites were identified, of which 13 were proven to be glycosylated, and 4 were found not to be glycosylated by direct analysis of tryptic peptides. Our findings on apoB structure provide a basis for future experimentation on the role of apoB-100-containing lipoproteins in atherosclerosis.  相似文献   

11.
12.
Structure of apolipoprotein B-100 in low density lipoproteins   总被引:10,自引:0,他引:10  
There is general consensus that amphipathic alpha-helices and beta sheets represent the major lipid-associating motifs of apolipoprotein (apo)B-100. In this review, we examine the existing experimental and computational evidence for the pentapartite domain structure of apoB. In the pentapartite nomenclature presented in this review (NH(2)-betaalpha(1)-beta(1)-alpha(2)-beta(2)-alpha(3)-COOH), the original alpha(1) globular domain (Segrest, J. P. et al. 1994. Arterioscler. Thromb. 14: 1674;-1685) is expanded to include residues 1;-1,000 and renamed the betaalpha(1) domain. This change reflects the likelihood that the betaalpha(1) domain, like lamprey lipovitellin, is a globular composite of alpha-helical and beta-sheet secondary structures that participates in lipid accumulation in the co-translationally assembled prenascent triglyceride-rich lipoprotein particles. Evidence is presented that the hydrophobic faces of the amphipathic beta sheets of the beta(1) and beta(2) domains of apoB-100 are in direct contact with the neutral lipid core of apoB-containing lipoproteins and play a role in core lipid organization. Evidence is also presented that these beta sheets largely determine LDL particle diameter. Analysis of published data shows that with a reduction in particle size, there is an increase in the number of amphipathic helices of the alpha(2) and alpha(3) domains associated with the surface lipids of the LDL particle; these increases modulate the surface pressure decreases caused by a reduction in radius of curvature. The properties of the LDL receptor-binding region within the overall domain structure of apoB-100 are also discussed. Finally, recent three-dimensional models of LDL obtained by cryoelectron microscopy and X-ray crystallography are discussed. These models show three common features: a semidiscoidal shape, a surface knob with the dimensions of the betaC globular domain of lipovitellin, and planar multilayers in the lipid core that are approximately 35 A apart; the multilayers are thought to represent cholesteryl ester in the smectic phase. These models present a conundrum: are LDL particles circulating at 37 degrees C spheroidal in shape, as generally assumed, or are they semidiscoidal in shape, as suggested by the models? The limited evidence available supports a spheroidal shape.  相似文献   

13.
Rabbit plasma low density lipoprotein (LDL) contains one major apolipoprotein of apparent molecular weight of 320 kDa, designated apolipoprotein (apo) Bh, while another component termed apoB1 of apparent molecular weight of 220 kDa is found in chylomicrons. The fragments generated by thrombin digestion of the protein moieties of rabbit and human LDL were separated by polyacrylamide gradient gel electrophoresis and compared. As in the human species, the enzyme produced limited cleavage patterns of rabbit LDL apoB. Within the first 2 h, two fragments (Tr1 and Tr2, with apparent molecular weights 280,000 and 44,000, respectively) appeared. Longer incubations led to the production of two additional peptides, Tr3 and Tr4 (apparent molecular weights 180,000 and 96,000, respectively). Ten monoclonal antibodies, developed against rabbit LDL and designated P01 to P10, were found to react with rabbit apoB. Some also cross-reacted with human apoB. Epitope mapping, performed with these antibodies, showed that Tr3 and Tr4 were derived from the further degradation of Tr1. The rabbit is one of the most frequently used animals in atherosclerosis research. Its LDL receptor has been characterized and there exists a strain of homozygous LDL receptor-deficient rabbits referred to as WHHL rabbits. Despite this, little has been done to characterize the structure of rabbit apoB; only a short region has been sequenced and shown to be the carboxyl-terminal region, the rabbit apoB1. The molecular weight of human apoB (550,000) is much larger than rabbit apoBh. In both species, a primary and secondary thrombin cleavage occur, but the size of the fragments produced is very different between the two species. Identification of the thrombolytic fragments of the rabbit apoB have afforded the opportunity to compare the structures of both apoB species.  相似文献   

14.
Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very early during pregnancy in the placenta. To examine whether the human placenta produces lipoproteins, we examined apoB and microsomal triglyceride transfer protein (MTP) mRNA expression in placental biopsies. ApoB and MTP are mandatory for assembly and secretion of apoB-containing lipoproteins. Both genes were expressed in placenta and microsomal extracts from human placenta contained triglyceride transfer activity, indicating expression of bioactive MTP. To detect lipoprotein secretion, biopsies from term placentas were placed in medium with [(35)S]methionine and [(35)S]cysteine for 3-24 h. Upon sucrose gradient ultracentrifugation of the labeled medium, fractions were analyzed by apoB-immunoprecipitation. (35)S-labeled apoB-100 was recovered in d approximately 1.02-1.04 g/ml particles (i.e. similar to the density of plasma low density lipoproteins). Electron microscopy of negatively stained lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway of lipid transfer from the mother to the developing fetus.  相似文献   

15.
Nine hypercholesterolemic and hypertriglyceridemic subjects were enrolled in a randomized, placebo-controlled, double-blind, crossover study to test the effect of atorvastatin 20 mg/day and 80 mg/day on the kinetics of apolipoprotein B-100 (apoB-100) in triglyceride-rich lipoprotein (TRL), intermediate density lipoprotein (IDL), and LDL, of apoB-48 in TRL, and of apoA-I in HDL. Compared with placebo, atorvastatin 20 mg/day was associated with significant reductions in TRL, IDL, and LDL apoB-100 pool size as a result of significant increases in fractional catabolic rate (FCR) without changes in production rate (PR). Compared with the 20 mg/day dose, atorvastatin 80 mg/day caused a further significant reduction in the LDL apoB-100 pool size as a result of a further increase in FCR. ApoB-48 pool size was reduced significantly by both atorvastatin doses, and this reduction was associated with nonsignificant increases in FCR. The lathosterol-campesterol ratio was decreased by atorvastatin treatment, and changes in this ratio were inversely correlated with changes in TRL apoB-100 and apoB-48 PR. No significant effect on apoA-I kinetics was observed at either dose of atorvastatin. Our data indicate that atorvastatin reduces apoB-100- and apoB-48-containing lipoproteins by increasing their catabolism and has a dose-dependent effect on LDL apoB-100 kinetics. Atorvastatin-mediated changes in cholesterol homeostasis may contribute to apoB PR regulation.  相似文献   

16.
We have previously isolated two proteins which can reduce phosphatidylcholine hydroperoxide (PC-OOH) from human blood plasma and identified one of the proteins as apolipoprotein A-I (Mashima, R. , et al. (1998) J. Lipid Res. 39, 1133-1140). In the present study we have identified the other protein as apolipoprotein B-100 (apo B-100) by amino acid sequence analysis of its tryptic peptides. The reactivity of lipid hydroperoxides with apo B-100 decreased in the order of PC-OOH > linoleic acid hydroperoxide > cholesteryl ester hydroperoxide under our experimental conditions. Pretreatment of apo B-100 with chloramine T, an oxidant of methionine, diminished the PC-OOH-reducing activity, indicating that some of 78 methionines are responsible for the reduction of PC-OOH. Despite the presence of 6 methionines in albumin, albumin was inactive to reduce PC-OOH. Free methionine was also inactive. These data suggest that the accessibility and binding of lipid hydroperoxides to the protein methionine residues are crucial for reduction of lipid hydroperoxides.  相似文献   

17.
The structural domains of human apolipoprotein B-100 in low density lipoproteins (LDL) and the conformational changes of B-100 that accompany the conversion of very low density lipoproteins (VLDL) to LDL were investigated by limited proteolysis with 12 endoproteases of various specificities, and their cleavage sites were determined. In B-100 of LDL, we identified two peptide regions that are highly susceptible to proteolytic cleavage. One region encompassed about 40 amino acids (residues 1280-1320, designated as the NH2-terminal region) and the other about 100 amino acids (residues 3180-3280, designated as the COOH-terminal region). IN LDL, the cleavage sites in both susceptible regions of B-100 were readily accessible to limited proteolysis; but in VLDL, only sites in the COOH-terminal region were readily accessible. Moreover, B-100 in VLDL appeared less degraded than B-100 in LDL by all enzymes used. Reduction of disulfide bonds of B-100 in both LDL and VLDL before digestion by Staphylococcus aureus V8 protease and clostripain exposed additional cleavage sites and increased the rate of B-100 degradation, suggesting that disulfide bonds probably exert conformational constraints. These results indicate the presence of three principal structural domains in B-100 of LDL that are relatively resistant to limited proteolysis. These three domains are connected by the two susceptible peptide regions. Our results also demonstrate differential accessibility of cleavage sites in B-100 of LDL and VLDL to limited proteolysis. This differential accessibility suggests that substantial changes in the conformation or environment of B-100 accompany the conversion of VLDL to LDL.  相似文献   

18.
Low density lipoprotein (LDL) from human plasma was digested with the specific endoprotease, kallikrein. Apolipoprotein B-100, the protein moiety of LDL, was cleaved by kallikrein into two fragments (K1 and K2) which we have compared to the naturally occurring fragments, B-74 and B-26. We have found that K1 and K2 precisely match B-74 and B-26 with respect to molecular weight, stoichiometry, and amino terminal amino acid sequence. These findings provide strong evidence that kallikrein is the agent responsible for the formation of B-74 and B-26 in human LDL.  相似文献   

19.
Human low-density lipoprotein (LDL) is a major cholesterol carrier in blood. Elevated concentration of low-density lipoprotein, especially when oxidized, is a risk factor for atherosclerosis and other cardiac inflammatory diseases. Past research has connected free radical initiated oxidations of LDL with the formation of atherosclerotic lesions and plaque in the arterial wall. The role of LDL protein in the associated diseases is still poorly understood, partially due to a lack of structural information. In this study, LDL was oxidized by hydroxyl radical. The oxidized protein was then delipidated and subjected to trypsin digestion. Peptides derived from trypsin digestion were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identification of modified peptide sequences was achieved by a database search against apo B-100 protein sequences using the SEQUEST algorithm. At different hydroxyl radical concentrations, oxidation products of tyrosine, tryptophan, phenylalanine, proline, and lysine were identified. Oxidized amino acid residues are likely located on the exterior of the LDL particle in contact with the aqueous environment or directly bound to the free radical permeable lipid layer. These modifications provided insight for understanding the native conformation of apo B-100 in LDL particles. The presence of some natural variants at the protein level was also confirmed in our study.  相似文献   

20.
Apolipoprotein (apo) B-100 is a key protein compound of plasma lipid metabolism. This protein, as a sole component of LDL particles, to a great extent controls the homeostasis of LDL cholesterol in the plasma. Therefore, this protein and its structural variants play an important role in development of hyperlipidemia and atherosclerosis. Intensive research into the structure and biological functions of apoB-100 has led to identification of its complete structure as well as the responsible binding sites. With the development of the methods of molecular biology, some structural variants of the apoB-100 protein that directly affect its binding properties have been described. These are mutations leading to amino acid substitution at positions 3500 (R3500Q and R3500W) and 3531 (R3531C) that have been shown to decrease the binding affinity of apoB-100 in vitro. However, only the former mutations have been unequivocally demonstrated to cause hyperlipidemia in vivo. This minireview is aimed to discuss the impact of apoB-100 and its structural variants on plasma lipid metabolism and development of hyperlipidemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号