首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renin-angiotensin system (RAS) is a powerful modulator of renal hemodynamic and fluid homeostasis. Up-regulation in components of intra-renal RAS occurs with ageing. Recently we reported that 2 year old uninephrectomised (uni-x) female sheep have low renin hypertension and reduced renal function. By 5 years of age, these uni-x sheep had augmented decrease in renal blood flow (RBF) compared to sham. We hypothesised that this decrease in RBF in 5 year old uni-x sheep was due to an up-regulation in components of the intra-renal RAS. In this study, renal responses to angiotensin II (AngII) infusion and AngII type 1 receptor (AT1R) blockade were examined in the same 5 year old sheep. We also administered AngII in the presence of losartan to increase AngII bioavailability to the AT2R in order to understand AT2R contribution to renal function in this model. Uni-x animals had significantly lower renal cortical content of renin, AngII (∼40%) and Ang 1–7 (∼60%) and reduced cortical expression of AT1R gene than sham animals. In response to both AngII infusion and AT1R blockade via losartan, renal hemodynamic responses and tubular sodium excretion were significantly attenuated in uni-x animals compared to sham. However, AngII infusion in the presence of losartan caused ∼33% increase in RBF in uni-x sheep compared to ∼14% in sham (P<0.05). This was associated with a significant decrease in renal vascular resistance in the uni-x animals (22% vs 15%, P<0.05) without any changes in systemic blood pressure. The present study shows that majority of the intra-renal RAS components are suppressed in this model of low renin hypertension. However, increasing the availability of AngII to AT2R by AT1R blockade improved renal blood flow in uni-x sheep. This suggests that manipulation of the AT2R maybe a potential therapeutic target for treatment of renal dysfunction associated with a congenital nephron deficit.  相似文献   

2.
Effects of Ap4A and NAD--precursor of adenosine, on renal plasma flow (RPF), glomerular filtration rate (GFR) and urine excretion were determined in the anaesthetised rats. Infusion of Ap4A or NAD (i.v., bolus--1 micromol/kg followed by 10 nmol/min/kg) decreased RPF and GFR (by 30 and 40%, respectively). In spite of GFR reduction during Ap4A infusion, the significant increase in sodium excretion and urine flow was noticed: fractional sodium (FENa) and urine excretion (FEurine) rose 15-fold and 2.5-fold in comparison with the control value, respectively. In contrast to Ap4A, NAD-induced decrease in GFR was associated with parallel decrease in sodium and urine excretion, thus the FENa and FEurine did not significantly change. Pretreatment with adenosine deaminase (adenosine degrading enzyme, 2 U/min/kg) or theophylline (P1-receptors antagonist, 0.2 mmol/min/kg) ceased responses to NAD, whereas Ap4A-induced changes were not affected. Pre-treatment with suramin (P2-receptors antagonist, (i.v., bolus--12 mg/kg followed by 1.2 mg/min/kg) completely abolished the renal effects of Ap4A. We conclude that Ap4A may exert specific action on renal function. It acts different from NAD that modified renal function through its hydrolysis product--adenosine. Ap4A might reduce glomerular filtration rate and evoke natriuresis and diuresis, and its effects are probably mediated through stimulation of P2-receptors.  相似文献   

3.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

4.
Cross-linked hemoglobin (XL-Hb) infused into dogs increases mean arterial pressure (MAP) but decreases blood flow to the renal (RBF), mesenteric (MBF), and iliac (IBF) circulations. These actions differ markedly from dextran infusion (which increases RBF, MBF, and IBF without altering MAP) and may be due to scavenging of nitric oxide by XL-Hb. However, because the hormonal milieu regulating regional circulation is altered during hemorrhage (when XL-Hb may be used), we studied whether systemic hemodynamics, RBF, MBF, IBF, and renal excretory function in hemorrhaged dogs was altered when resuscitated with XL-Hb compared with dextran (n = 6 each). Hemorrhage decreased MAP by 25% due to a 75% decline in cardiac output. RBF, MBF, and IBF all fell by 33, 64, and 72%, respectively (P<0.05 each). There was also a fall in glomerular filtration rate (GFR), urinary flow, and sodium excretion (P<0.05 each). After resuscitation, MAP, cardiac output, RBF, MBF, IBF, and GFR all recovered to basal values with either XL-Hb or dextran. Urinary flow and sodium excretion increased to above basal levels with dextran (both by 3.5-fold; P<0.05) or XL-Hb (by 7.5- and 10-fold, respectively; P<0.05). We conclude that resuscitation with XL-Hb after hemorrhage not only increases MAP, but also restores RBF, MBF, IBF, GFR, and urinary sodium and volume excretion analogously to dextran. The results contrast with those in normal dogs and suggest that nitric oxide inhibition does not impair hemodynamic and renal function recovery during hemorrhage.  相似文献   

5.
The evidence supporting a role for direct neurogenic control of renal function was investigated in twenty anaesthetized dogs. Unilateral renal sympathectomy was induced by 0.5 mg/kg/min of lidocain infusion into the left renal artery and the kidney function changes were compared to those observed in the right non infused kidney. The renal parameters were similar in the kidneys during the control periods. 0.5 mg/kg/min of lidocain infusion into the left renal artery resulted in significant reductions of the RBF, GFR, urine and sodium excretion in the left kidney. The intrarenal lidocain infusion induced a small decrease of the arterial blood pressure but this can not explain the changes observed in the left kidney. The modifications of the right kidney function during lidocain infusion were significantly less than those observed in the left kidney. Comparing the measured RBF and the renal blood flow calculated by the CPAH in the left kidney during the lidocain infusion, we have found a marked difference, when the decrease of the calculated RBF was greater. We believe that effects of pharmacological denervation can be best explained by the intrarenal hemodinamically mediated changes. The sympathectomy produces a considerable vasoconstriction in the renal cortical vascular bed, subsequently it decreases the RBF, GFR renal sodium and water excretion. But the lidocain blocks the sympathetic nerves influencing the renal medullary vessels and the renal medullary blood flow increases. These observations are not consistent with the notion that renal nerves are at least partially responsible for the natriuresis accompanying salt loading.  相似文献   

6.
It is well established that activation of endothelin B (ETB) receptor induces natriuresis and diuresis and thus reduces blood pressure. However, the site of action of ETB receptor is debatable. The present study was undertaken to address the role of renal medullary ETB receptor in renal excretory function. In volume-expanded Sprague-Dawley rats, infusion of the ETB antagonist A192621 at 0.5 mg/kg/hr to the renal medulla induced an immediate and significant reduction of urine flow rate that was 87.5% +/- 7.1%, 68% +/- 20%, and 58.3% +/- 15.5% of the control value at 10, 30, and 60 mins, respectively (n=5, P < 0.05 at each time point). Following intramedullary infusion of A192621, urinary sodium excretion remained unchanged during the first 20 mins but started to decline thereafter with a maximal effect at 60 mins. Changes in urinary excretion of potassium and chloride followed the same pattern of changes as for urinary sodium. In contrast, urinary osmolality gradually and significantly increased (control: 419 +/- 66; A192621 at 60 mins: 637 +/- 204 mOsm/kg H2O, P < 0.05). Over a 60-min period of intramedullary infusion of A192621, none of the hemodynamic parameters examined, including mean arterial pressure, renal blood flow, or medullary blood flow, were affected. These data suggest that: (i) intramedullary blockade of ETB receptor produces antidiuresis and antinatriuresis independently of hemodynamic changes, and (ii) the immediate response to intramedullary blockade of ETB receptor is the reduction of water excretion followed by the reduction of sodium excretion.  相似文献   

7.
In this study, we examined the effects of angiotensin II (AngII) in a genetic in vitro PD model produced by alpha-synuclein (alpha-syn) overexpression in the human neuroglioma H4 cell line. We observed a maximal decrease in alpha-syn-induced toxicity of 85% and reduction in inclusion formation by 19% when cultures were treated with AngII in the presence of the angiotensin type 1 (AT1) receptor antagonist losartan and AT2 receptor antagonist PD123319. When compared to AngII, the AT4 receptor agonist AngIV was moderately effective in protecting H4 cells against alpha-syn toxicity and did not significantly reduce inclusion formation. Here we show that AngII is protective against genetic, as well as neurotoxic models of PD. These data support the view that agents acting on the renin-angiotensin-system (RAS) may be useful in the prevention and/or treatment of Parkinson's disease.  相似文献   

8.
The continuous infusion or bolus injection of the platelet-activating factor (PAF) is associated with profound hypotension, marked reductions of renal plasma flow, glomerular filtration, and urinary sodium excretion. All these effects are inhibited by blocking PAF receptors. To examine further the potential mediators of PAF on renal function, we utilized L-655,240 (6 mg/kg, intravenously), a thromboxane-prostaglandin endoperoxide antagonist, to study the systemic and renal response to PAF (0.8 micrograms/kg, intravenously) in the anesthetized dog, using clearance methodology. PAF decreased blood pressure from 115 +/- 7 to 54 +/- 4 mmHg (1 mmHg = 133.3 Pa), renal plasma flow from 105 +/- 6 to 74 +/- 56 mL/min, and glomerular filtration from 43 +/- 3 to 32 +/- 1 mL/min. PAF also reduced urine volume from 1.1 +/- 0.2 to 0.4 +/- 0.1 mL/min, and urinary sodium from 158 +/- 7 to 86 +/- 7 mu equiv./min. L-655,240 alone had no significant effect on blood pressure, renal plasma flow, and filtration rate, at any dose. However, the 6-mg/kg dose resulted in a slight elevation of diuresis, from 1.1 +/- 0.2 to 1.9 +/- 0.1 mL/min, and urinary sodium, from 134 +/- 13 to 212 +/- 19 mu equiv./min. All doses of L-655,240 blocked the effect of PAF on blood pressure. However, the two lower doses of this antagonist (1 and 3 mg/kg) failed to prevent the PAF-induced fall of renal plasma flow and filtration rate, and attenuated the effect on urinary sodium in a dose-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of the three prostaglandins A1, E2, and F on renal blood flow, glomerular filtration rate (GFR), fluid excretion, and urinary output of Na, K, Ca, Cl, and solutes were evaluated at a dose range of 0.01 – 10 μg/min. The prostaglandins were infused into the renal artery of dogs. GFR was not significantly altered by the PGs. PGA1 increased renal blood flow by approximately of the control at 0.01 μg/min without dose dependence at higher infusion rates. It had only little effects which were not dose dependent on fluid and electrolyte output. The effects of PGE2 on renal blood flow, fluid, sodium, and chloride excretion were dose dependent with a steep slope of the dose response curve between 0.1 and 1.0 μg/min. Blood flow was increased maximally by 80 %, urine volume by more than 400 %. PGF had no effect on renal blood flow, whereas urinary output was increased to approximately the same maximal level as by E2 although ten times higher doses were needed. Potassium excretion was less influenced than the excretion of Na and Cl and osmolar clearance was less increased than urine volume by all three prostaglandins.It is concluded that if a PG is involved in the regulation of the renal fluid or electrolyte excretion it is likely to be of the PGE-type. A PGA could only be involved in regulation of renal hemodynamics, whereas PGF although effective in the kidney exerts its effects at doses too high to have physiological significance.  相似文献   

10.
Intrarenal arterial (i.a.) infusions of prostacyclin (PGI2) at 30-300 ng/min to anaesthetized dogs reduced renal vascular resistance (RVR) and filtration fraction (FF), increased mean renal blood flow (MRBF) but did not alter mean arterial pressure (MAP)or glomerular filtration rate (GFR). The urinary excretion of sodium (UNaV), potassium (UKV) and chloride ions (UC1V) were increased through inhibition of net tubular ion reabsorption. PGI2 (3000 ng/min, i.a.) reduced MAP and increased heart rate. Intravenous (i.v.) infusions of PGI2 (3000 gn/min) reduced MAP, GFR, FF, urine volume and ion excretion, with elevation of heart rate. The measured variables were unaltered by 6-oxo-PGF1 alpha (10,000 ng/min i.a.). Treatment of the dogs with the PG synthetase inhibitor meclofenamic acid (2.5 mg/kg i.v.) did not antagonise the elevation of MRBF to PGI2 (300 ng/min i.a.). Thus the renal effects of PGI2 were due to a direct action rather than through conversion to 6-oxo-PGF1 alpha or through stimulation of endogenous renal PG biosynthesis and release.  相似文献   

11.
In addition to its extrarenal functions, including the control of arterial pressure and aldosterone secretion, the renin-angiotensin system (RAS) also has multiple intrarenal actions in controlling glomerular filtration rate (GFR) and sodium excretion. Angiotensin II (AngII) helps to prevent excessive decreases in GFR in different physiological and pathophysiological conditions by preferentially constricting the efferent arterioles, an action that can be mediated by either intrarenally formed or circulating AngII. Circulating AngII and intrarenally formed AngII do not appear to directly constrict preglomerular vessels, including the afferent arterioles, when the RAS is activated physiologically. The sodium-retaining action of AngII may be due, in part, to constriction of efferent arterioles and to subsequent changes in peritubular capillary physical forces. However, AngII may also directly stimulate sodium reabsorption in proximal and distal tubules, although the exact site at which AngII increases distal tubular transport is still uncertain. Considerable evidence indicates that the direct intrarenal effects of AngII on tubular reabsorption, including those caused by changes in peritubular capillary physical forces or a direct action on tubular transport, are quantitatively more important than those mediated by changes in aldosterone secretion. Thus, the intrarenal effects of AngII provide a mechanism for stabilizing the GFR and excretion of metabolic waste products while causing sodium and water retention, thereby helping to regulate body fluid volumes and arterial pressure.  相似文献   

12.
The effects of felodipine on renal hemodynamics and excretion were evaluated in the anesthetized dog. Unilateral renal arterial infusion of felodipine produced ipsilateral increases in the absolute and fractional excretion of sodium and water which were greater than those of potassium; these effects occurred in the absence of changes in mean arterial pressure, renal blood flow, or glomerular filtration rate. There were no significant effects on renal hemodynamic or excretory function in the contralateral kidney. The unilateral renal arterial infusion of isotonic saline or vehicle produced no significant effects on renal hemodynamic or excretory function in either ipsilateral or contralateral kidney. Felodipine, a calcium antagonist with vasodilator antihypertensive properties, in doses which do not affect systemic or renal hemodynamics in the dog, increased urinary flow rate and sodium excretion by decreasing renal tubular water and sodium reabsorption. As a vasodilator antihypertensive agent, felodipine possesses potentially advantageous diuretic and natriuretic properties.  相似文献   

13.
Previous studies have shown that intrahepatic adenosine is involved in activation of the hepatorenal reflex that regulates renal sodium and water excretion. The present study aims to determine which subtype of adenosine receptors is implicated in the process. Mean arterial pressure, portal venous pressure and flow, and renal arterial flow were monitored in pentobarbital anesthetized rats. Urine was collected from the bladder. Intraportal administration of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, increased urine flow by 24%, 89%, and 143% at the dose of 0.01, 0.03, and 0.1 mg x kg(-1), respectively; in contrast, DPCPX, when administered intravenously at the same doses, only increased urine flow by 0%, 18%, and 36%. The increases in urine flow induced by intraportal administration of DPCPX were abolished in rats with liver denervation. Intrahepatic infusion of adenosine significantly decreased urine flow and this response was abolished by intraportal administration of DPCPX. Neither intraportal nor intravenous administration of 3,7-dimethyl-1-propargylxanthine, a selective adenosine A2 receptor antagonist, showed significant influence on urine flow. Systemic arterial pressure, renal blood flow and glomerular filtration rate were unaltered by the administration of any of the drugs. In conclusion, intrahepatic adenosine A1 receptors are responsible for the adenosine-mediated hepatorenal reflex that regulates renal water and sodium excretion.  相似文献   

14.
Effects of angiotensins II (AngII), angiotensin IV (AngIV, 3-8 fragment of angiotensin II) and losartan (an antagonist of angiotensin receptor type 1) on the proliferation of adrenocortical cells in ovariectomized rats have been studied. The incorporation of bromodeoxyuridine (BrdU) into cell nuclei was used as an index of cell proliferation. AngIV decreased BrdU labeling index mainly in the reticularis zone and losartan (Los) was able to partially reverse this inhibitory effect of AngIV. AngII had no effect on the adrenocortical cell proliferation when given alone, however Los given simultaneously diminished BrdU incorporation into nuclei of glomerulosa and reticularis zones as compared with AngII. These findings suggest that AngII and AngIV modulate adrenocortical cell proliferation in ovariectomized rats.  相似文献   

15.
16.
Contribution of angiotensin to the control of medullary hemodynamics   总被引:3,自引:0,他引:3  
The unique architecture and organization of medullary vasculature permit regional regulation of medullary hemodynamics by vasoactive hormones and are conducive to the operation of the countercurrent multiplication system. Recent studies suggest that an increase in inner medullary blood flow causes medullary solute washout, which in turn decreases passive sodium transport in the thin ascending limb of Henle's loop. In canine models of chronic sodium retention accompanied by activation of the renin-angiotensin system, glomerular filtration rate (GFR), renal blood flow (RBF), and intracortical blood flow distribution were similar to those in normal dogs; however, papillary plasma flow (PPF) was markedly reduced and papillary tissue solute content was increased significantly both during hydropenia and after saline loading. During euvolemic diuresis with loop diuretics, there was an increased renin release associated with a marked reduction in PPF, despite an increase in total RBF. Direct intrarenal infusion of angiotensin II (AngII) (at a dose not affecting GFR and RBF) induced ipsilateral sodium retention, conservation of urinary concentration, and papillary ischemia. These studies provide evidence for regional regulation of medullary hemodynamics by AngII, possibly contributing to sodium retention in chronic salt-retaining states.  相似文献   

17.
Hippocampal slices taken from animals chronically or acutely treated with ethanol exhibit significant inhibition of long-term potentiation (LTP). This inhibition appears to be associated with impaired activity of N-methyl-D-aspartate (NMDA) receptors, perhaps via ethanol-induced increases in GABAergic synaptic transmission. Recently, a role for the octapeptide angiotensin II (AngII) in ethanol's inhibition of LTP has been reported. Complementary to these findings our laboratory has shown that the application of the hexapeptide metabolite of AngII, angiotensin IV (AngIV), significantly facilitated normal tetanic-induced LTP in the hippocampal slice. This facilitation is presumably by activation of the angiotensin receptor subtype, AT(4). The present study tested whether an AT(4) receptor agonist could overcome ethanol-induced suppression of LTP. The results indicate that Nle(1)-AngIV could offset ethanol-induced suppression of LTP in the CA(1) region of the hippocampus. Pretreatment with the specific AT(4) receptor antagonist Nle(1), Leual(3)-AngIV blocked this facilitation implicating the involvement of the AT(4) receptor subtype. These results suggest that an AT(4) receptor agonist is effective in overcoming ethanol's suppressing influence on LTP, and encourage further investigation of the cognitive enhancing properties of such compounds.  相似文献   

18.
Renal function was studied in 15 newborn New Zealand rabbits administered either 0.6 mg/kg enprofylline intravenously. Each animal acted as its own control. Glomerular filtration rate (GFR) and renal blood flow (RBF) were assessed by the clearances of inulin and para-aminohippuric acid, respectively. Enprofylline, a xanthine with low adenosine antagonistic properties, did not modify urine flow rate, GFR, RBF, renal vascular resistance, filtration fraction, sodium and potassium urinary excretion, whereas administration of theophylline, a potent adenosine antagonist, was associated with a significant increase in diuresis, renal vascular resistance and filtration fraction. The differences observed in the renal effects of theophylline and enprofylline strongly support the view that 1) the renal actions of micromolar concentrations of theophylline are mediated by an antagonism with endogenous renal adenosine; 2) renal adenosine could play a physiological role in the regulation of renal hemodynamics.  相似文献   

19.
D(1)-like (D(1), D(5)) and D(2)-like (D(2), D(3), D(4)) dopamine receptors interact in the kidney to produce a natriuresis and a diuresis. Disruption of D(1) or D(3) receptors in mice results in hypertension that is caused, in part, by a decreased ability to excrete an acute saline load. We studied D(1)-like and D(2)-like receptor interaction in anesthetized spontaneously hypertensive rats (SHR) by the intrarenal infusion of Z-1046 (a novel dopamine receptor agonist with rank order potency of D(3)> or =D(4)>D(2)>D(5)>D(1)). Z-1046 increased glomerular filtration rate (GFR), urine flow, and sodium excretion in normotensive Wistar-Kyoto rats but not in SHRs. The lack of responsiveness to Z-1046 in SHRs was not an epiphenomenon, because intrarenal cholecystokinin infusion increased GFR, urine flow, and sodium excretion to a similar extent in the two rat strains. We conclude that renal D(1)-like and D(2)-like receptor interaction is impaired in SHRs. The impaired D(1)-like and D(2)-like receptor interaction in SHRs is not caused by alterations in the coding sequence of the D(3) receptor, the D(2)-like receptor expressed in rat renal tubules that has been shown to be involved in sodium transport. Because the diuretic and natriuretic effects of D(1)-like receptors are, in part, caused by an interaction with D(2)-like receptors, it is possible that the decreased Z-1046 action in SHRs is secondary to the renal D(1)-like receptor dysfunction in this rat strain.  相似文献   

20.
Angiotensin II (AngII) elicited a rapid and dose-related production of intracellular cyclic GMP (cGMP) in murine neuroblastoma N1E-115 cells. The agonist-induced rise in cGMP levels was blocked in a monophasic fashion by the AT1-selective antagonist DuP 753 or the nonselective antagonist [Sarc1,Ile8]-AngII, and both antagonists produced complete inhibition of the cGMP response elicited by submaximal concentrations of AngII. In contrast, the AT2-selective antagonist CGP 42112A inhibited the cGMP response biphasically. At lower antagonist concentrations, agonist-induced cGMP production was only partially inhibited, whereas complete inhibition was observed only when the concentration of CGP 42112A was increased sufficiently to interact with both AT1 and AT2 receptor subtypes. AngII also increased inositol trisphosphate (InsP3) levels in N1E-115 cells. However, the InsP3 response was mediated exclusively by the AT1 receptor subtype because it was inhibited by lower, AT1-selective concentrations of DuP 753, whereas only higher, nonselective concentrations of CGP 42112A were effective. Finally, the stimulatory effects of AngII on cGMP production appeared to be mediated by the intracellular formation of nitric oxide in that they were attenuated by the nitric oxide synthase inhibitor, N-monomethyl-L-arginine. Collectively, these results suggest that the AngII-elicited rise in cGMP levels may require an interaction between AT1-mediated mobilization of intracellular Ca2+, as well as some partial role of AT2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号