首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the first-row transition metal ions on the right(B)- to left(Z)-handed helical transition of poly[d(G-C)] have been determined. The Z conformation is induced by MnCl2 at submillimolar concentrations. The forward reaction has a very large activation energy (440 kJ/mol) so that a facile conversion occurs only at temperatures above 45 degrees C. However, the left-handed form remains stable upon cooling. The addition of ethanol (20% v/v) eliminates the requirement for elevated temperature. The transition is highly co-operative and is accompanied by spectral changes (absorption, circular dichroism) characteristic for the B----Z conformational transition. NiCl2 and CoCl2 also induce the B----Z transition in poly[d(G-C)] but the activation energies and thus the temperature requirements for the forward reaction are lower than those observed with MnCl2. The left-handed DNA formed in the presence of Mn2+ is similar to 'Z DNA' previously described in Mg2+-EtOH (van de Sande and Jovin , 1982): (a) it readily sediments out of solution at low speed as a consequence of intermolecular association which, however, is not accompanied by turbidity; and (b) it supports the binding of ethidium bromide although this drug interacts preferentially with the B form of DNA. With Ni2+, the B----Z isomerization step can be separated from the subsequent specific Z----Z* association. Mn2+, Ni2+, and Co2+ also promote the B----Z transition of poly[d(G-m5C)] at substoichiometric concentrations with respect to DNA nucleotide.  相似文献   

2.
We describe the packing features of the oligonucleotide duplex d(AAATTT)2, as determined by X-ray diffraction. There is little information on sequences that only contain A and T bases. The present structure confirms that these sequences tend to pack as a helical arrangement of stacked oligonucleotides in a B conformation with Watson-Crick hydrogen bonding. Our results demonstrate that the virtual TA base step between stacked duplexes has a negative twist that improves base stacking. This observation is consistent with the low stability of TA base steps in B-form DNA.  相似文献   

3.
To study the helical structure in a P-loop formed by an invasion of oligopyrimidine peptide nucleic acid (PNA) into DNA duplex, bent DNA fragments containing a homopurine.homopyrimidine sequence between two bent DNA loci were prepared. As the spacer DNA length between the two bent loci varied by 1 bp over one helical turn, the electrophoretic mobility, reflecting the overall extent of DNA bending, was modulated sinusoidally in non-denaturing 5% polyacrylamide gel. When the bent DNA fragments differing in the spacer DNA length were preincubated with an oligopyrimidine PNA, the gel mobilities were changed due to a P-loop formation. By analyzing the gel mobility data with variations of the P-loop size, average helical parameters at the P-loop structure were determined. (PNA)2. (DNA) triplex within a P-loop had the helical periodicities of 15. 6(0.2) bp per turn at 20 degrees C and 17.4(0.7) bp per turn at 10 degrees C. In addition, the results indicate that a helical unwinding by 57(7) degrees at 20 degrees C and 37(13) degrees at 10 degrees C is present at the two junctions between a P-loop and its adjacent DNA duplex.  相似文献   

4.
The DNA fragment d(GGGTACCC) was crystallized as an A-DNA duplex in the hexagonal space group P6(1). The structure was analyzed at room temperature and low temperature (100K) at a resolution of 2.5 A. The helical conformations at the two temperatures are similar but the low-temperature structure is more economically hydrated than the room-temperature one. The structure of d(GGGTACCC) is compared to those of d(GGGTGCCC) and d(GGGCGCCC). This series of molecules, which consists of a mismatched duplex and its two Watson-Crick analogues, exhibits three conformational variants of the A-form of DNA, which are correlated with the specific intermolecular interactions observed in the various crystals. The largest differences in local conformation are displayed by the stacking geometries of the central pyrimidine-purine and the flanking purine-pyrimidine sites in each of the three duplexes. Stacking energy calculations performed on the crystal structures show that the mismatched duplex is destabilized with respect to each of the error-free duplexes, in accordance with helix-coil transition measurements.  相似文献   

5.
Abstract

We describe the packing features of the oligonucleotide duplex d(AAATTT)2, as determined by X-ray diffraction. There is little information on sequences that only contain A and T bases. The present structure confirms that these sequences tend to pack as a helical arrangement of stacked oligonucleotides in a B conformation with Watson-Crick hydrogen bonding. Our results demonstrate that the virtual TA base step between stacked duplexes has a negative twist that improves base stacking. This observation is consistent with the low stability of TA base steps in B-form DNA.  相似文献   

6.
J Klysik  K Rippe    T M Jovin 《Nucleic acids research》1991,19(25):7145-7154
DNA oligonucleotides with appropriate sequences can form a stable duplex in which the two strands are paired in a parallel orientation instead of as the conventional antiparallel double helix of B-DNA. In parallel-stranded DNA (ps-DNA) base pairing is noncanonical with the glycosidic bonds in a trans orientation. The two grooves are equivalent. We have synthesized DNA duplexes consisting of a central parallel-stranded (dA)15.(dT)15 tract flanked by normal antiparallel regions, and ligated them into the pUC18 plasmid. The effect of negative supercoiling on the covalently closed circular molecules was studied by two-dimensional agarose gel electrophoresis and by chemical modification with OsO4-pyridine (Os,py) and diethylpyrocarbonate (DEPC). The following results were obtained: (i) The ps insert, and by inference ps-DNA in general, adopts a right handed helical form. (ii) Upon increasing the negative superhelix density (-sigma) to greater than 0.03 the 15 bp ps insert undergoes a major transition leading to a relaxation corresponding to a reduction in twist of approximately 2.5 helical turns. The transition free surgery is approximately kcal/mol. (iii) The chemical modification pattern of the resulting structure suggests that the purine strand folds back and associates with the pyrimidine strand, forming a novel intramolecular triplex structure consisting of d(A.A.T) base triplets. A model for the triplex conformation is proposed and its thermodynamic properties are analyzed by statistical mechanics.  相似文献   

7.
Directions and magnitudes of the local mobility of the Z-DNA hexamer duplex CpGpCpGpCpG have been determined by crystallographic refinement of anisotropic displacement parameters using the observed X-ray diffraction data. The cytidine and guanosine residues demonstrate different modes of mobility, implying that a dinucleotide is the smallest repeating unit in terms of flexibility as well as structure. Directions of librational and translational mobility of the cytidine and guanosine residues of Z-DNA are similar to those observed for the same nucleotides in B-DNA. This suggests that the local mobility of DNA is primarily determined by the individual nucleotide type and by the constraints of Watson-Crick base-pairing, rather than by helical form. Differences in the magnitudes of mobility may be responsible for some of the different physical properties of B-DNA and Z-DNA. The B to Z transition is discussed in terms of the observed flexibilities of these two helical forms.  相似文献   

8.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

9.
Structure of a pleiomeric form of poly d(AT):poly d(AT)   总被引:1,自引:2,他引:1       下载免费PDF全文
A chemically simple polynucleotide duplex, poly d(AT):poly d(AT), has been trapped in a fibrous form with a complex helical secondary structure with a large (7.4 nm) axial repeat 24 nucleotides long. The motif which is repeated by the symmetry elements is a hexanucleotide in which two residues (both TpA) have the less common gauche minus conformation at C3'-O3' and consequently distinctive phosphate orientations. This reinforces earlier conclusions that PypPu nucleotides tend to have different shapes from PupPy nucleotides and that DNA surfaces may signal what base sequences lie beneath them. The morphological differences between this pleiomeric DNA polymer and closely-related, but more symmetrical allomorphs are just as great as those observed in short DNA fragments in crystals.  相似文献   

10.
Poly(dI-dC).poly(dI-dC) was studied using vibrational circular dichroism and IR spectroscopy in both the base deformation C = O and symmetric PO2- stretching regions. VCD spectra of this duplex under low salt conditions are consistent with its having a B-form structure. Addition of 5 M NaCl leads to relatively uniform VCD intensity loss which is consistent with loss of helical structure rather than formation of an intermediate state between the B and Z forms. This duplex polymer under high salt conditions with added NiCl2 shows aggregation effects, but its IR and VCD spectra have characteristic features of the Z-form DNA conformation. The cooperative change of backbone and base pair structure upon thermal denaturation is indicated by the simultaneous collapse of the VCD at 65 degrees C in both the PO2- and C = O stretching regions. This study further demonstrates that the VCD bandshape of a specific localized nucleic acid vibrational transition can be a useful indicator of the helical handedness. The empirical conformational interpretations are supported by simulated VCD spectra, which are in excellent agreement with the experimental results, based on dipole coupling calculations.  相似文献   

11.
Structural polymorphism of DNA is a widely accepted property. A simple addition to this perception has been our recent finding, where a single nucleotide polymorphism (SNP) site present in a quasipalindromic sequence of β-globin LCR exhibited a hairpin-duplex equilibrium. Our current studies explore that secondary structures adopted by individual complementary strands compete with formation of a perfect duplex. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, circular dichroism (CD) techniques, we have demonstrated the structural transitions within a perfect duplex containing 11 bp quasipalindromic stretch (TGGGG(G/C)CCCCA), to hairpins and bulge duplex forms. The extended version of the 11 bp duplex, flanked by 5 bp on both sides also demonstrated conformational equilibrium between duplex and hairpin species. Gel-electrophoresis confirms that the duplex coexists with hairpin and bulge duplex/cruciform species. Further, in CD spectra of duplexes, presence of two overlapping positive peaks at 265 and 285 nm suggest the features of A- as well as B-type DNA conformation and show oligomer concentration dependence, manifested in A → B transition. This indicates the possibility of an architectural switching at quasipalindromic region between linear duplex to a cruciform structure. Such DNA structural variations are likely to be found in the mechanics of molecular recognition and manipulation by proteins.  相似文献   

12.
J Ausio  G Zhou  K van Holde 《Biochemistry》1987,26(18):5595-5599
Polynucleosomes with poly(dG-m5dC).poly(dG-m5dC) have been reconstituted, and well-defined nucleosome core particles from these have been prepared. Upon addition of MgCl2 to the levels used to induce the B to Z transition in this highly methylated DNA, significant changes in the circular dichroism spectrum are observed in solutions of these particles. However, such core particles also exhibit a noticeable instability when compared to chicken erythrocyte core particles under the same conditions. The change in circular dichroism can be entirely accounted for on the assumption that only free nucleotide, released by core particle dissociation, undergoes the B----Z transition. Therefore, no evidence has been found for "Z nucleosomes" in these solutions. In fact, the histone-DNA interaction in the nucelosome seems to partially inhibit the B to Z transition of the DNA. The analysis of our results is consistent with a model in which all of the DNA that remains bound to the histone octamer retains the B form.  相似文献   

13.
We present and analyze the structure of the oligonucleotide d(ATATAT) found in two different forms by X-ray crystallography and in solution by NMR. We find that in both crystal lattices the oligonucleotide forms an antiparallel double helical duplex in which base pairing is of the Hoogsteen type. The double helix is apparently very similar to the standard B-form of DNA, with about 10 base pairs per turn. However, the adenines in the duplex are flipped over; as a result, the physicochemical features of both grooves of the helix are changed. In particular, the minor groove is narrow and hydrophobic. On the other hand, d(ATATAT) displays a propensity to adopt the B conformation in solution. These results confirm the polymorphism of AT-rich sequences in DNA. Furthermore, we show that extrahelical adenines and thymines can be minor groove binders in Hoogsteen DNA.  相似文献   

14.
The mismatched duplex d(GGGTGCCC) (I) and its two Watson-Crick analogues (dGGGCGCCC) (II) and d(GGGTACCC) (III) were synthesized. The X-ray crystal structures of (I) and (II) were determined at resolutions of 2.5 and 1.7 A (1 A = 0.1 nm) and refined to R factors of 15 and 16%, respectively. (I) and (II) crystallize as A-DNA doublehelical octamers in space groups P61 and P4(3)2(1)2, respectively, and are stable at room temperature. The central two G.T mispairs of (I) adopt the wobble geometry as observed in other G.T mismatches. The two structures differ significantly in their local conformational features at the central helical regions as well as in some global ones. In particular, T-G adopts a large helical twist (44 degrees) whereas C-G adopts a small one (24 degrees). This difference can be rationalized on the basis of simple geometrical considerations. Base-pair stacking energies which were calculated for the two duplexes indicate that (I) is destabilized with respect to (II). Helix-coil transition measurements were performed for each of the three oligomers by means of ultraviolet absorbance spectrophotometry. The results indicate that the stability of the duplexes and the co-operativity of the transition are in the following order: (I) less than (III) less than (II). Such studies may help in understanding why certain regions of DNA are more likely to undergo spontaneous mutations than others.  相似文献   

15.
Sequence specificity of Z-DNA formation in oligonucleotides   总被引:1,自引:0,他引:1  
The sequence specific requirement for B----Z transition in solution was examined in d(CGTGCGCACG), d(CGTACGTACG), d(ACGTACGT) in presence of various Z-inducing factors. Conformational studies show that inspite of the alternating nature of purines and pyrimidines, the aforementioned sequences do not undergo B----Z transition under the influence of NaCl, hexamine cobalt chloride and ethanol. A comparison with the crystal structures of an assorted array of purine and pyrimidine sequences show that the sequence requirement for B----Z transition is much more stringent in solution as compared to the solid state. The disruptive influence of AT base pairs in B to Z transition is discussed.  相似文献   

16.
The poly(dG-dC) helical duplex forms a modified, B-family structure (B*) at very high hydration and a normal B structure at slightly lower hydration. The B* structure is slightly different in sugar-phosphate and base-stacking conformations than the B structure. Increasing the hydration or decreasing the NaCl content stabilizes B* with respect to B. Poly(dG-dC) forms the Z structure at low NaCl contents when the hydration is sufficiently reduced. At moderate NaCl content, the B to Z transition is sharp and cooperative for hydration with D2O. Hydration with H2O broadens the transition which occurs at lower hydration. This suggests that hydrogen bonding is stronger in the Z structure and helps stabilize Z over B. IR spectra may be used to quantitatively estimate the fractions of B and Z structures present in a sample. Some new indicator bands are described.  相似文献   

17.
The presence of A(n) and A(n)T(n) tracts in double-helical sequences perturbs the structural properties of DNA molecules, resulting in the formation of an alternate conformation to standard B-DNA known as B'-DNA. Evidence for a transition occurring prior to duplex melting in molecules containing A(n) tracts was previously detected by circular dichroism (CD) and calorimetric studies. This premelting transition was attributed to a conformational change from B'- to B-DNA. Structural features of A(n) and A(n)T(n) tracts revealed by X-ray crystallography include a large degree of propeller twisting of adenine bases, narrowed minor grooves, and the formation of three-centered H-bonds between dA and dT bases. We report UV resonance Raman (UVRR) and CD spectroscopic studies of two related DNA dodecamer duplexes, d(CGCAAATTTGCG)(2) (A(3)T(3)) and d(CGCATATATGCG)(2) [(AT)(3)]. These studies address the presence of three-centered H-bonds in the B' conformation and gauge the impact of these putative H-bonds on the structural and thermodynamic properties of the A(3)T(3) duplex. UVRR and CD spectra reveal that the premelting transition is only observed for the A(3)T(3) duplex, is primarily localized to the dA and dT bases, and is associated with base stacking interactions. Spectroscopic changes associated with the premelting transition are not readily detectable for the sugar-phosphate backbone or the cytosine and guanosine bases. The temperature-dependent concerted frequency shifts of dA exocyclic NH(2) and dT C4=O vibrational modes suggest that the A(3)T(3) duplex forms three-centered hydrogen bonds at low temperatures, while the (AT)(3) duplex does not. The enthalpy of this H-bond, estimated from the thermally induced frequency shift of the dT C4=O vibrational mode, is approximately 1.9 kJ/mol or 0.46 kcal/mol.  相似文献   

18.
A theoretical model for the binding of cis-Pt(NH3)2(+2) to DNA   总被引:1,自引:0,他引:1  
The binding of cis-Pt(NH3)2B1B2 to the bases B1 and B2, i.e., guanine (G), cytosine (C), adenine (A), and thymine (T), of DNA is studied theoretically. The components of the binding are analyzed and a model structure is proposed for the intrastrand binding to the dB1pdB2 sequence of a kinked double helical DNA. Quantum mechanical calculations of the ligand binding energy indicates that cis-Pt(NH3)2(+2) (cis-PDA) binds to N7(G), N3(C), O2(C), O6(G), N3(A), N7(A), O4(T) and O2(T) in order of decreasing binding energy. Conformational analysis provides structures of kinked DNA in which adjacent bases chelate to cis-PDA. Only bending toward the major groove allows the construction of acceptable square planar complexes. Examples are presented for kinks of -70 degrees and -40 degrees at the receptor site to orient the base pairs for ligand binding to B1 and B2 to form a nearly square planar complex. The energies for complex formation of cis-PDA to the various intra-strand base sites in double stranded DNA are estimated. At least 32 kcal/mole separates the energetically favorable dGpdG.cis-PDA chelate from the dCpdG.cis-PDA chelate. All other possible chelate structures are much higher in energy which correlates with their lack of observation in competition with the preferred dGpdG chelate. The second most favorable ligand energy occurs with N3(C). A novel binding site involving dC(N3)pdG(N7) is examined. Denaturation can result in an anti----syn rotation of C about its glycosidic bond to place N3(C) in the major groove for intrastrand binding in duplex DNA. This novel intrastrand dCpdG complex and the most favored dGpdG structure are illustrated with stereographic projections.  相似文献   

19.
Abstract

The solution structure of an estrone (Es)-tethered tandem DNA duplex consisting of two Estethered tetranucleotides and a target octameric DNA sequence is reported. The structure of this Es-tethered tandem duplex has been compared with a corresponding natural tandem duplex without estrones. The Tm of the 3′-Es-tethered tetranucleotide part of the tandem duplex increases by 5°C, whereas the Tm of the 5′-Es-tethered tetranucleotide part increases by 7°C, compared with the corresponding natural counterpart. The NMR structures of both the Es-tethered tandem duplex and the natural counterpart have been based on 24 experimental NMR constraints per residue. Despite the fact that there is considerable distortion at the junction of two Es-tethered tetranucleotides in the major groove of the Es-tethered DNA duplex compared to the natural counterpart, both duplexes do take up B-type DNA structures. It is likely that the spatial proximity of two Es residues, and the resulting hydrophobic interaction between them might be responsible for the increase of the thermal stability of the Es-tethered tandem duplex in comparison with the natural counterpart.  相似文献   

20.
We have determined the single crystal x-ray structure of the synthetic DNA hexamer d(pCpGpCpGpCpG) in two different crystal forms. The hexamer pCGCGCG has the Z-DNA conformation and in both cases the asymmetric unit contains more than one Z-DNA duplex. Crystals belong to the space group C222(1) with a = 69.73, b = 52.63, and c = 26.21 A, and to the space group P2(1) with a = 49.87, b = 41.26, c = 21.91 A, and gamma = 97.12 degrees. Both crystals show new crystal packing modes. The molecules also show striking new features when compared with previously determined Z-DNA structures: 1) the bases in one duplex have a large inclination with respect to the helical axis, which alters the overall shape of the molecule. 2) Some cytosine nitrogens interact by hydrogen bonding with phosphates in neighbor molecules. Similar base-phosphate interactions had been previously detected in some B-DNA crystals. 3) Basepair stacking between the ends of neighbor molecules is variable and no helical continuity is maintained between contiguous hexamer duplexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号