首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Trehalose synthase (TreS) catalyzes the reversible interconversion of trehalose (glucosyl-alpha,alpha-1,1-glucose) and maltose (glucosyl-alpha1-4-glucose). TreS was purified from the cytosol of Mycobacterium smegmatis to give a single protein band on SDS gels with a molecular mass of approximately 68 kDa. However, active enzyme exhibited a molecular mass of approximately 390 kDa by gel filtration suggesting that TreS is a hexamer of six identical subunits. Based on amino acid compositions of several peptides, the treS gene was identified in the M. smegmatis genome sequence, and was cloned and expressed in active form in Escherichia coli. The recombinant protein was synthesized with a (His)(6) tag at the amino terminus. The interconversion of trehalose and maltose by the purified TreS was studied at various concentrations of maltose or trehalose. At a maltose concentration of 0.5 mm, an equilibrium mixture containing equal amounts of trehalose and maltose (42-45% of each) was reached during an incubation of about 6 h, whereas at 2 mm maltose, it took about 22 h to reach the same equilibrium. However, when trehalose was the substrate at either 0.5 or 2 mm, only about 30% of the trehalose was converted to maltose in >or= 12 h, indicating that maltose is the preferred substrate. These incubations also produced up to 8-10% free glucose. The K(m) for maltose was approximately 10 mm, whereas for trehalose it was approximately 90 mm. While beta,beta-trehalose, isomaltose (alpha1,6-glucose disaccharide), kojibiose (alpha1,2) or cellobiose (beta1,4) were not substrates for TreS, nigerose (alpha1,3-glucose disaccharide) and alpha,beta-trehalose were utilized at 20 and 15%, respectively, as compared to maltose. The enzyme has a pH optimum of about 7 and is inhibited in a competitive manner by Tris buffer. [(3)H]Trehalose is converted to [(3)H]maltose even in the presence of a 100-fold or more excess of unlabeled maltose, and [(14)C]maltose produces [(14)C]trehalose in excess unlabeled trehalose, suggesting the possibility of separate binding sites for maltose and trehalose. The catalytic mechanism may involve scission of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose, as [(3)H]glucose incubated with TreS and either unlabeled maltose or trehalose results in formation of [(3)H]disaccharide. TreS also catalyzes production of a glucosamine disaccharide from maltose and glucosamine, suggesting that this enzyme may be valuable in carbohydrate synthetic chemistry.  相似文献   

2.
We show that Mycobacterium smegmatis has an enzyme catalyzing transfer of maltose from [14C]maltose 1-phosphate to glycogen. This enzyme was purified 90-fold from crude extracts and characterized. Maltose transfer required addition of an acceptor. Liver, oyster, or mycobacterial glycogens were the best acceptors, whereas amylopectin had good activity, but amylose was a poor acceptor. Maltosaccharides inhibited the transfer of maltose from [14C]maltose-1-P to glycogen because they were also acceptors of maltose, and they caused production of larger sized radioactive maltosaccharides. When maltotetraose was the acceptor, over 90% of the 14C-labeled product was maltohexaose, and no radioactivity was in maltopentaose, demonstrating that maltose was transferred intact. Stoichiometry showed that 0.89 μmol of inorganic phosphate was produced for each micromole of maltose transferred to glycogen, and 56% of the added maltose-1-P was transferred to glycogen. This enzyme has been named α1,4-glucan:maltose-1-P maltosyltransferase (GMPMT). Transfer of maltose to glycogen was inhibited by micromolar amounts of inorganic phosphate or arsenate but was only slightly inhibited by millimolar concentrations of glucose-1-P, glucose-6-P, or inorganic pyrophosphate. GMPMT was compared with glycogen phosphorylase (GP). GMPMT catalyzed transfer of [14C]maltose-1-P, but not [14C]glucose-1-P, to glycogen, whereas GP transferred radioactivity from glucose-1-P but not maltose-1-P. GMPMT and GP were both inhibited by 1,4-dideoxy-1,4-imino-d-arabinitol, but only GP was inhibited by isofagomine. Because mycobacteria that contain trehalose synthase accumulate large amounts of glycogen when grown in high concentrations of trehalose, we propose that trehalose synthase, maltokinase, and GMPMT represent a new pathway of glycogen synthesis using trehalose as the source of glucose.  相似文献   

3.
A novel trehalose synthase (TreS) gene was identified from a metagenomic library of saline-alkali soil by a simple activity-based screening system. Sequence analysis revealed that TreS encodes a protein of 552 amino acids, with a deduced molecular weight of 63.3 kDa. After being overexpressed in Escherichia coli and purified, the enzymatic properties of TreS were investigated. The recombinant TreS displayed its optimal activity at pH 9.0 and 45 °C, and the addition of most common metal ions (1 or 30 mM) had no inhibition effect on the enzymatic activity evidently, except for the divalent metal ions Zn2+ and Hg2+. Kinetic analysis showed that the recombinant TreS had a 4.1-fold higher catalytic efficientcy (Kcat/K m) for maltose than for trehalose. The maximum conversion rate of maltose into trehalose by the TreS was reached more than 78% at a relatively high maltose concentration (30%), making it a good candidate in the large-scale production of trehalsoe after further study. In addition, five amino acid residues, His172, Asp201, Glu251, His318 and Asp319, were shown to be conserved in the TreS, which were also important for glycosyl hydrolase family 13 enzyme catalysis.  相似文献   

4.
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose and has been shown recently to function primarily in the mobilization of trehalose as a glycogen precursor. Consequently, the mechanism of this intriguing isomerase is of both academic and potential pharmacological interest. TreS catalyzes the hydrolytic cleavage of α-aryl glucosides as well as α-glucosyl fluoride, thereby allowing facile, continuous assays. Reaction of TreS with 5-fluoroglycosyl fluorides results in the trapping of a covalent glycosyl-enzyme intermediate consistent with TreS being a member of the retaining glycoside hydrolase family 13 enzyme family, thus likely following a two-step, double displacement mechanism. This trapped intermediate was subjected to protease digestion followed by LC-MS/MS analysis, and Asp(230) was thereby identified as the catalytic nucleophile. The isomerization reaction was shown to be an intramolecular process by demonstration of the inability of TreS to incorporate isotope-labeled exogenous glucose into maltose or trehalose consistent with previous studies on other TreS enzymes. The absence of a secondary deuterium kinetic isotope effect and the general independence of k(cat) upon leaving group ability both point to a rate-determining conformational change, likely the opening and closing of the enzyme active site.  相似文献   

5.
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose. A novel treS gene with a length of 3,369 bp, encoding a protein of 1,122 amino acid residues with a predicted molecular mass of 126 kDa, was cloned from a marine Pseudomonas sp. P8005 (CCTCC: M2010298) and expressed in Escherichia coli. The amino acid sequence identities between this novel TreS and other reported TreS is relatively low. The purified recombinant TreS showed an optimum pH and temperature of 7.2 and 37 °C, respectively. The enzyme displayed a high conversion rate (70 %) of maltose to trehalose during equilibrium and had a higher catalytic efficiency (k cat/K m) for maltose than for trehalose, suggesting its application in the production of trehalose. In addition to maltose and trehalose, this enzyme can also act on sucrose, although this activity is relatively low. Mutagenesis studies demonstrated that enzymatic activity was reduced dramatically by individually substitution with alanine for D78, Y81, H121, D219, E261, H331 or D332, which implied that these residues might be important in P8005-TreS. Experiments using isotope-labeled substrates showed that [2H2]trehalose combined with unlabeled trehalose was converted to [2H2]maltose and maltose, but without any production of [2H]maltose or [2H]trehalose and with no incorporation of exogenous [2H7]glucose into the disaccharides during the conversion catalyzed by this enzyme. This finding indicated the involvement of an intramolecular mechanism in P8005-TreS catalyzing the reversible interconversion of maltose and trehalose.  相似文献   

6.
A thermostable trehalose synthase (TreS) gene from Meiothermus ruber CBS-01 was cloned and overexpressed in Escherichia coli. The purified recombinant TreS could utilize maltose to produce trehalose, and showed an optimum pH and temperature of 6.5 and 50°C, respectively. Kinetic analysis showed that the enzyme had a twofold higher catalytic efficiency (k cat/K m) for maltose than for trehalose, indicating maltose as the preferred substrate. The TreS also had a weak hydrolytic property with glucose as the byproduct, and glucose was a strong competitive inhibitor of the enzyme. The maximum production of trehalose by the enzyme reached 65% at 20°C. The most importantly the enzyme could maintain very high activity (above 90%) at pH 4.0–8.0 and 60°C 5 h. These results provided that the stable TreS was suitable for the industrial production of trehalose from maltose in a one-step reaction.  相似文献   

7.
Trehalose is a unique disaccharide capable of protecting proteins against environmental stress. A novel trehalose synthase (TreS) gene from Rhodococcus opacus was cloned and expressed in Escherichia coli Top10 and BL21 (DE3) pLysS, respectively. The recombinant TreS showed a molecular mass of 79 kDa. Thin layer chromatography (TLC) result suggested that this enzyme had the ability to catalyze the mutual conversion of maltose and trehalose. Moreover, high-performance liquid chromatography (HPLC) result suggested that glucose appeared as a byproduct with a conversion rate of 12 %. The purified recombinant enzyme had an optimum temperature of 25 °C and pH optimum around 7.0. Kinetic analysis revealed that the K m for trehalose was around 98 mM, which was a little higher than that of maltose. The preferred substrate of TreS was maltose according to the analysis of k cat/K m. Both 1 and 10 mM of Hg2+, Cu2+ and Al3+ could inhibit the TreS activity, while only 1 mM of Ca2+ and Mn2+ could increase its activity. Five amino acid residues, Asp244, Glu286, Asp354, His147 and His353, were shown to be conserved in R. opacus TreS, which were also important for α-amylase family enzyme catalysis.  相似文献   

8.
Trehalose is a nonreducing disaccharide synthesized by trehalose synthase (TreS), which catalyzes the reversible interconversion of maltose and trehalose. We aimed to enhance the catalytic conversion of maltose to trehalose by saturation mutagenesis, and constructed a self-inducible TreS expression system by generating a robust Bacillus subtilis recombinant. We found that the conversion yield and enzymatic activity of TreS was enhanced by saturation mutations, especially by the combination of V407M and K490L mutations. At the same time, these saturation mutations were contributing to reducing by-products in the reaction. Compared to WT TreS, the conversion yield of maltose to trehalose was increased by 11.9%, and the kcat/Km toward trehalose was 1.33 times higher in the reaction catalyzed by treSV407M-K490L. treSV407M-K490L expression was further observed in the recombinant B. subtilis W800N(ΔσF) under the influence of PsrfA, Pcry3Aa, and PsrfA-cry3Aa promoters without an inducer. It was shown that PsrfA-cry3Aa was evidently a stronger promoter for treSV407M-K490L expression, with the intracellular enzymatic activity of recombinant treSV407M-K490L being over 5,800 U/g at 35 hr in TB medium. These results suggested the combination of two mutations, V407M and K490L, was conducive for the production of trehalose. In addition, the self-inducible TreSV407M/K490L mutant in the B. subtilis host provides a low-cost choice for the industrial production of endotoxin-free trehalose with high yields.  相似文献   

9.
The levels of glycogen, free trehalose, and lipid-bound trehalose were compared in Mycobacterium smegmatis grown under various conditions of nitrogen limitation. In a mineral salts medium supplemented with yeast extract and containing fructose as the carbon source, the accumulation of glycogen increased dramatically as the NH(4)Cl content of the medium was lowered. However, levels of free trehalose remained relatively constant. Cells were grown in low nitrogen medium and were then shifted to medium containing high nitrogen. Under these conditions, there was a rapid accumulation of glycogen in low nitrogen, and this glycogen was rapidly depleted when cells were placed in high nitrogen medium. Again the concentration of free trehalose remained fairly constant. However, when cells were grown in low nitrogen medium with [(14)C]fructose and then transferred to high nitrogen medium with unlabeled fructose, the specific radioactivity (counts per minute per micromole) of the free trehalose fell immediately, indicating that it was being synthesized and turned over continually. On the other hand, the specific radioactivity of the glycogen and bound trehalose declined much more slowly, suggesting that these two compounds were not turning over as rapidly or were being synthesized at a much slower rate. Experiments on the incorporation of [(14)C]fructose into glycogen and trehalose indicated that cells in high nitrogen medium synthesized much less glycogen than those in low nitrogen. However, synthesis of both free trehalose and bound trehalose was the same in both cases. The specific enzymatic activities of the glycogen synthetase and the trehalose phosphate synthetase varied somewhat from one growth condition to another, but there was no correlation between enzymatic activity and the amount of glycogen or trehalose, suggesting that changes in glycogen levels were not due to increased synthetic capacity. The glycogen synthetase was purified about 35-fold and its properties were examined. This enzyme was specific for adenosine diphosphate glucose as the glucosyl donor.  相似文献   

10.
Trehalose is a non-reducing disaccharide that has wide applications in the food industry and pharmaceutical manufacturing. Trehalose synthase (TreS) from Pseudomonas putida P06 catalyzes the reversible interconversion of maltose and trehalose and may have applications in the food industry. However, the catalytic mechanism of TreS is not well understood. Here, we investigated the structural characteristics of this enzyme by homology modeling. The highly conserved Asp294 residue was identified to be critical for catalytic activity. In addition, flexible docking studies of the enzyme–substrate system were performed to predict the interactions between TreS and its substrate, maltose. Amino acids that interact extensively with the substrate and stabilize the substrate in an orientation suitable for enzyme catalysis were identified. The importance of these residues for catalytic activity was confirmed by the biochemical characterization of the relevant mutants generated by site-directed mutagenesis.  相似文献   

11.
12.

Background  

Trehalose synthase (TreS) which converts maltose to trehalose is considered to be a potential biocatalyst for trehalose production. This enzymatic process has the advantage of simple reaction and employs an inexpensive substrate. Therefore, new TreS producing bacteria with suitable enzyme properties are expected to be isolated from extreme environment.  相似文献   

13.
D-Ribose isomerase was purified and crystallized from cells of Mycobacterium smegmatis grown on either D-ribose or L-rhamnose. Isomerase activity for both of these sugars remained together throughout the purification. The isomerase from L-rhamnose-grown cells had the same chemical and physical properties as the enzyme isolated from D-ribose grown cells. In addition, immunological studies indicated that both activities were in the same protein since antisera prepared against either of the crystals cross-reacted with the other and gave lines of symmetry by the agar gel diffusion method.  相似文献   

14.
Trehalose synthase (TreS) is an intramolecular transglycosylase. It specially catalyzes the conversion of maltose and trehalose. In this study, a novel treS gene, which had a length of 1,797 bp and encoded 598 amino acids, was cloned from Arthrobacter aurescens CGMCC 1.1892 and expressed in Escherichia coli. Thin layer chromatography results indicated that it could catalyze the conversion between maltose and trehalose in one step. However, the ion chromatography results showed that, as a byproduct, about 13% glucose was also produced. The purified recombinant enzyme had a molecular weight of 68 kDa and showed its optimal activity at 35 °C and pH 6.5. This enzyme was not thermostable, and its activity was increased by 1 mM Mg2+, Mn2+, and Ca2+ while strongly inhibited by 5 mM Cu2+ and SDS.  相似文献   

15.
The properties of two amylase activities which differ in their substrate specificity and subcellular location as well as a chloroplast-associated R-enzyme (debranching activity) are reported. An extrachloroplastic amylase is resolved by gel filtration chromatography into two activities of 80,000 and 40,000 daltons. Both extrachloroplastic activities hydrolyze amylopectin and shellfish glycogen and only slowly hydrolyze rabbit liver glycogen, β-limit amylopectin, and amylose. In contrast, the major chloroplastic amylase attacks all of these glucans at comparable rates. Glucan hydrolysis by both the extrachloroplastic and chloroplastic amylase generates not only maltose but appreciable amounts of other oligosaccharides, whereas maltotetraose hydrolysis produces glucose, maltose, and maltotriose. The action patterns displayed by the amylase activities indicate that both are endoamylases, although they lack the typical Ca2+ requirement or heat stability of seed endosperm α-amylases. Dithiothreitol, glutathione (oxidized or reduced), ascorbate, dehydroascorbate, and dithiothreitol plus thioredoxin have no effect on either the chloroplastic or extrachloroplastic amylase activities.  相似文献   

16.
Trehalose is a nonreducing disaccharide of glucose (alpha,alpha-1,1-glucosyl-glucose) that is essential for growth and survival of mycobacteria. These organisms have three different biosynthetic pathways to produce trehalose, and mutants devoid of all three pathways require exogenous trehalose in the medium in order to grow. Mycobacterium smegmatis and Mycobacterium tuberculosis also have a trehalase that may be important in controlling the levels of intracellular trehalose. In this study, we report on the purification and characterization of the trehalase from M. smegmatis, and its comparison to the trehalase from M. tuberculosis. Although these two enzymes have over 85% identity throughout their amino acid sequences, and both show an absolute requirement for inorganic phosphate for activity, the enzyme from M. smegmatis also requires Mg(2+) for activity, whereas the M. tuberculosis trehalase does not require Mg(2+). The requirement for phosphate is unusual among glycosyl hydrolases, but we could find no evidence for a phosphorolytic cleavage, or for any phosphorylated intermediates in the reaction. However, as inorganic phosphate appears to bind to, and also to greatly increase the heat stability of, the trehalase, the function of the phosphate may involve stabilizing the protein conformation and/or initiating protein aggregation. Sodium arsenate was able to substitute to some extent for the sodium phosphate requirement, whereas inorganic pyrophosphate and polyphosphates were inhibitory. The purified trehalase showed a single 71 kDa band on SDS gels, but active enzyme eluted in the void volume of a Sephracryl S-300 column, suggesting a molecular mass of about 1500 kDa or a multimer of 20 or more subunits. The trehalase is highly specific for alpha,alpha-trehalose and did not hydrolyze alpha,beta-trelalose or beta,beta-trehalose, trehalose dimycolate, or any other alpha-glucoside or beta-glucoside. Attempts to obtain a trehalase-negative mutant of M. smegmatis have been unsuccessful, although deletions of other trehalose metabolic enzymes have yielded viable mutants. This suggests that trehalase is an essential enzyme for these organisms. The enzyme has a pH optimum of 7.1, and is active in various buffers, as long as inorganic phosphate and Mg(2+) are present. Glucose was the only product produced by the trehalase in the presence of either phosphate or arsenate.  相似文献   

17.
The current knowledge of trehalose biosynthesis under stress conditions is incomplete and needs further research. Since trehalose finds industrial and pharmaceutical applications, enhanced accumulation of trehalose in bacteria seems advantageous for commercial production. Moreover, physiological role of trehalose is a key to generate stress resistant bacteria by metabolic engineering. Although trehalose biosynthesis requires few metabolites and enzyme reactions, it appears to have a more complex metabolic regulation. Trehalose biosynthesis in bacteria is known through three pathways – OtsAB, TreYZ and TreS. The interconnections of in vivo synthesis of trehalose, glycogen or maltose were most interesting to investigate in recent years. Further, enzymes at different nodes (glucose‐6‐P, glucose‐1‐P and NDP‐glucose) of metabolic pathways influence enhancement of trehalose accumulation. Most of the study of trehalose biosynthesis was explored in medically significant Mycobacterium, research model Escherichia coli, industrially applicable Corynebacterium and food and probiotic interest Propionibacterium freudenreichii. Therefore, the present review dealt with the trehalose metabolism in these bacteria. In addition, an effort was made to recognize how enzymes at different nodes of metabolic pathway can influence trehalose accumulation.  相似文献   

18.
DNA sequencing and operon disruption experiments indicate that the genes glgBI and glgBII, which code for the two developmentally specific glycogen branching enzymes of Streptomyces coelicolor A3(2) each form part of larger duplicated operons consisting of at least four genes in the order pep1-treS-pep2-glgB. The sequences of the TreS proteins are 73% identical (93% similar) to that of an enzyme that converts maltose into trehalose in Pimelobacter, a distantly related actinomycete; and the Pep1 proteins show relatedness to the α-amylase superfamily. Disruptions of each operon have spatially specific effects on the nature of glycogen deposits, as assessed by electron microscopy. Upstream of the glgBI operon, and diverging from it, is a gene (glgP) that encodes a protein resembling glycogen phosphorylase from Thermatoga maritima and a homologue in Mycobacterium tuberculosis. These three proteins form a distinctive subgroup compared with glycogen phosphorylases from most other bacteria, which more closely resemble the enzymes from eukaryotes. Diverging from the glgBII operon, and separated from the pep1 gene by two very small ORFs, is a gene (glgX) encoding a probable glycogen debranching enzyme. It is suggested that most of these gene products participate in the developmentally modulated interconversion of immobile, inert glycogen reservoirs, and diffusible forms of carbon, both metabolically active (e.g. glucose-1-phosphate generated by glycogen phosphorylase) and metabolically inert but physiologically significant (trehalose). Received: 12 November 1999 / Accepted: 31 January 2000  相似文献   

19.
The trehalose-phosphate phosphatase (TPP) was purified from the cytosol of Mycobacterium smegmatis to near homogeneity using a variety of conventional steps to achieve a purification of about 1600-fold with a yield of active enzyme of about 1%. Based on gel filtration, the active enzyme had a molecular weight of about 27,000, and the most purified fraction also gave a major band on SDS-PAGE corresponding to a molecular weight of about 27,000. A number of peptides from the 27-kDa protein were sequenced and these sequences showed considerable homology to the trehalose-P phosphatase (otsB) of Escherichia coli. Based on these peptides, the M. smegmatis gene for TPP was cloned and expressed in E. coli. The recombinant protein was synthesized with a (His)(6) tag at the amino terminus. Most of the TPP activity in the crude E. coli sonicate was initially found in the membrane fraction, but it became solubilized in the presence of 0.2% Sarkosyl. The solubilized protein was purified to apparent homogeneity on a metal ion column and this fraction had high phosphatase activity that was completely specific for trehalose-P. The purified enzyme, either isolated from M. smegmatis, or expressed in E. coli, rapidly dephosphorylated trehalose-6-P, but had essentially no activity on any other sugar phosphates, or on p-nitrophenyl phosphate. The K(m) for trehalose-6-P was about 1.6 mm, and the pH optimum was about 7.5. The native enzyme showed an almost absolute requirement for Mg(2+) and was not very active with Mn(2+), whereas both of these cations were equally effective with the recombinant TPP. The enzyme activity was inhibited by the antibiotics, diumycin and moenomycin, but not by a number of other antibiotics or trehalose analogs. TPP activity was strongly inhibited by the detergents, Sarkosyl and deoxycholate, even at 0.025%, but it was not inhibited by Nonidet P-40, Triton X-100, or octyl glucoside, even at concentrations up to 0.3%. The purified enzyme was stable to heating at 60 degrees C for up to 6 min, but was slowly inactivated at 70 degrees C. Circular dichroism studies on recombinant TPP indicate that the secondary structure of this protein has considerable beta-pleated sheet and is very compact. TPP may play a key role in the biosynthesis of trehalose compounds, such as trehalose mycolates, and therefore may represent an excellent target site for chemotherapy against tuberculosis and other mycobacterial diseases.  相似文献   

20.
A haloalkaliphilic archaebacterium, Natronococcus sp. strain Ah-36, produced extracellularly a maltotriose-forming amylase. The amylase was purified to homogeneity by ethanol precipitation, hydroxylapatite chromatography, hydrophobic chromatography, and gel filtration. The molecular weight of the enzyme was estimated to be 74,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amylase exhibited maximal activity at pH 8.7 and 55 degrees C in the presence of 2.5 M NaCl. The activity was irreversibly lost at low ionic strength. KCl, RbCl, and CsCl could partially substitute for NaCl at higher concentrations. The amylase was stable in the range of pH 6.0 to 8.6 and up to 50 degrees C in the presence of 2.5 M NaCl. Stabilization of the enzyme by soluble starch was observed in all cases. The enzyme activity was inhibited by the addition of 1 mM ZnCl2 or 1 mM N-bromosuccinimide. The amylase hydrolyzed soluble starch, amylose, amylopectin, and, more slowly, glycogen to produce maltotriose with small amounts of maltose and glucose of an alpha-configuration. Malto-oligosaccharides ranging from maltotetraose to maltoheptaose were also hydrolyzed; however, maltotriose and maltose were not hydrolyzed even with a prolonged reaction time. Transferase activity was detected by using maltotetraose or maltopentaose as a substrate. The amylase hydrolyzed gamma-cyclodextrin. alpha-Cyclodextrin and beta-cyclodextrin, however, were not hydrolyzed, although these compounds acted as competitive inhibitors to the amylase activity. Amino acid analysis showed that the amylase was characteristically enriched in glutamic acid or glutamine and in glycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号