首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: The traditional method of sex identification in beavers (Castor canadensis) by external palpation can be inaccurate. We tested 2 genetic methods for determining sex in beavers, the zinc-finger DNA marker and the Y chromosome-specific sex determining region (SRY) marker. The SRY marker identified sex correctly in 57 of 67 (85%) beavers, whereas the zinc-finger technique was successful less often in only 48 of 67 (72%) animals. Sex was correctly assigned by palpation for 21 of 27 beavers (78%). Beaver studies in which accurate sex identification is critical may benefit by verifying the sex of individuals using one or both of these molecular markers.  相似文献   

2.
The red bayberry genome and genetic basis of sex determination   总被引:2,自引:0,他引:2  
Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high‐quality genome for both a female and a male individual of red bayberry. The genome size was 313‐Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole‐genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59‐Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59‐Kb female‐specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non‐recombinant in the female‐specific region. Sex‐specific molecular markers developed from candidate genes co‐segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family.  相似文献   

3.
膜翅目昆虫单双倍体性别决定机制(雄性是单倍体、雌性是二倍体)在昆虫纲的进化中有非常重要的作用。通常膜翅目昆虫的性别由单一位点的等位基因决定,杂合体发育成雌性,半合体发育成雄性。在近亲繁殖的情况下,一定数目的雄性会出现纯合二倍体,由于遗传阻隔这种二倍体的雄性通常是不育的。csd基因的发现为膜翅目昆虫性别决定机制提供了分子生物学证据。文章探讨CSD的分子生物学基础,对膜翅目昆虫sl-CSD的分布进行综述并且探讨膜翅目昆虫降低二倍体雄性消耗的策略以及可能存在的进化机制,最后提出几点建议以便从遗传学、生态学以及进化生物学角度全面的了解sl-CSD。  相似文献   

4.
The pejerrey possesses a genotypic sex determination system driven by the amhy gene and yet shows marked temperature‐dependent sex determination. Sex‐reversed XY females have been found in a naturally breeding population established in Lake Kasumigaura, Japan. These females could mate with normal XY males and generate YY “supermale” individuals that, if viable and fertile, would sire only genotypic male offspring. This study was conducted to verify the viability, gender, and fertility of YY pejerrey and to develop a molecular method for their identification. Production of YY fish was attempted by crossing a thermally sex‐reversed XY female and an XY male, and rearing the progeny until sexual maturation. To identify the presumable YY individuals, we first conducted a PCR analysis using amhy‐specific primers to screen only amhy‐positive (XY and YY) fish. This screening showed that 60.6% of the progeny was amhy‐positive, which suggested the presence of YY fish. We then conducted a second screening by qPCR in order to identify the individuals with two amhy copies in their genome. This screening revealed 13 individuals, all males, with values twice higher than the other 30 amhy‐positive fishes, suggesting they have a YY complement. This assumption as well as the viability, fertility, and “supermale” nature of these individuals was confirmed in progeny tests with XX females that yielded 100% amhy‐positive offspring. These results demonstrate that qPCR can obviate progeny test as a means to identify the genotypic sex and therefore may be useful for the survey of all three possible genotypes in wild populations.  相似文献   

5.
6.
7.
Among the most defining events of an individual's life, is the development of a human embryo into male or a female. The phenotypic sex of an individual depends on the type of gonad that develops in the embryo, a process which itself is determined by the genetic setting of the individual. The development of the gonads is different from any other organ, as they possess the potential to differentiate into two functionally distinct organs, testes, or ovaries. Sex development can be divided into two distinctive processes, “sex determination,” which is the commitment of the undifferentiated gonad into either a testis or an ovary, a process that is genetically programmed in a critically timed manner and “sex differentiation,” which takes place through hormones produced by the gonads, once the developmental sex determination decision has been made. Disruption of any of the genes involved in either the testicular or ovarian development pathway could lead to disorders of sex development. In this review, we provide an insight into the factors important for sex determination, their antagonistic actions and whenever possible, references on the “prismatic” clinical cases are given. Birth Defects Research (Part C) 108:365–379, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
Sex determination mechanisms in many crustacean species are complex and poorly documented. In the giant freshwater prawn, Macrobrachium rosenbergii, a ZW/ZZ sex determination system was previously proposed based on sex ratio data obtained by crosses of sex‐reversed females (neomales). To provide molecular evidence for the proposed system, novel sex‐linked molecular markers were isolated in this species. Amplified fragment length polymorphism (AFLP) using 64 primer combinations was employed to screen prawn genomes for DNA markers linked with sex loci. Approximately 8400 legible fragments were produced, 13 of which were uniquely identified in female prawns with no indication of corresponding male‐specific markers. These AFLP fragments were reamplified, cloned and sequenced, producing two reliable female‐specific sequence characterized amplified region (SCAR) markers. Additional individuals from two unrelated geographic populations were used to verify these findings, confirming female‐specific amplification of single bands. Detection of internal polymorphic sites was conducted by designing new primer pairs based on these internal fragments. The internal SCAR fragments also displayed specificity in females, indicating high levels of variation between female and male specimens. The distinctive feature of female‐linked SCAR markers can be applied for rapid detection of prawn gender. These sex‐specific SCAR markers and sex‐associated AFLP candidates unique to female specimens support a sex determination system consistent with female heterogamety (ZW) and male homogamety (ZZ).  相似文献   

11.
12.
13.
The consequences of cytoplasmic sex‐ratio distortion and host repression for the evolution of host sex‐determining mechanisms are examined. Analytical models and simulations are developed to investigate whether the interplay between sex‐ratio distorters and host masculinizers or resistance genes can cause heterogamety switching (changes between male and female heterogamety). Switches from female heterogamety to a system analogous to male heterogamety can occur when selection favours the spread of autosomal masculinizers. However, the evolutionary outcome depends on the type of repressor and costs associated with repression, and also on aspects of population structure. Under most conditions, systems evolved to a polymorphic sex‐determining state although many systems were characterized by numerical dominance of male heterogamety.  相似文献   

14.
Aberrant expression of microRNAs has been shown to regulate the biological processes of lung cancer cells. However, the role of miR-638 in the development of NSCLC is still unclear. In this study, low miR-638 and high SOX2 were shown to be associated with tumor size and metastasis of NSCLC patients. Downregulated miR-638 could promote cell invasion and proliferation, while high miR-638 expression reversed the effect. Furthermore, miR-638 could regulate SOX2 by directly binding to its 3′-UTR. Silencing of SOX2 by siRNA partially abolished the enhancement of cell invasion and proliferation induced by downregulated miR-638. Aberrant miR-638 expression could modulate the expression levels of markers of epithelial-to-mesenchymal transition. Our results indicate that miR-638 may play a pivotal role in the development of NSCLC.  相似文献   

15.
16.
Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X‐chromosome and a unique second sex chromosome creating the following genotypes: XY*x, XX, XY*, XXY*. This Y* mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X‐chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X‐chromosomes. We present data showing, in addition to genes reported to escape X‐inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X‐chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y* model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.  相似文献   

17.
温度对黄喉拟水龟性别决定的影响   总被引:8,自引:1,他引:8  
研究了不同孵育温度对黄喉拟水龟(MauremysmuticaCantor)性别决定的影响,同时分析了孵育温度对胚胎发育及成活率的影响。实验设置的3个孵化温度为(25±0.5)℃,(29±0.5)℃和(33±0.5)℃。每一温度指标下设置40枚受精卵。在实验温度内,胚胎的发育速度随着孵化温度的升高而加快,所用的孵育时间也越来越短。孵化累积温度CTUs在25℃时最高,在29℃时最低,而33℃时则居中,在25℃和29℃时,孵化成活率较高,均达到97.5%。在33℃时孵化成活率只有67.5%,而在孵出的稚龟中亦有一定数量的畸形龟,累积孵化温度也高于29℃时的CTUs,说明33℃的孵育温度对胚胎发育有不利影响,预示33℃已临近其胚胎发育的存活阈(Survivalthreshold)。在25℃时,雄性子代占优势,雌性率为23.7%;在33℃时,雌性子代占绝对优势,雌性率为94.7%;在29℃时,性比达到平衡,雌性率为50%。经X2检验,在25℃及33℃时的性比与依赖概率估计的性比(1∶1)有极显著的差异(p<0.005),这种显著的偏离说明黄喉拟水龟的性别决定属于TSD机制,而且可能属于其中的TSDⅠ型,即高温产生雌性子代,低温产生雄性子代。而29℃可能是黄喉拟水龟性别决定的临界温度。  相似文献   

18.
The sex of most mammals is determined by the action of SRY. Its presence initiates testis formation resulting in male differentiation, its absence results in ovary formation and female differentiation. We have used suppression subtraction hybridisation between 12.0-12.5 days postcoitum (dpc) mouse testes and ovaries to identify genes that potentially lie within the Sry pathway. Normalised urogenital ridge libraries comprising 8,352 clones were differentially screened with subtracted probes. A total of 272 candidate cDNAs were tested for qualitative differential expression and localisation by whole mount in situ hybridisation; germ cell-dependent or -independent expression was further resolved using busulfan. Fifty-four genes were identified that showed higher expression in the testis than the ovary. One novel gene may be a candidate for interactions with WT1, based on its localisation to Sertoli cells and map position (16q24.3).  相似文献   

19.
Although much progress has been achieved in understanding the genetic basis of adaptation, the drivers of genome evolution remain obscure. For instance, extensive variation among reptilian genomes continues largely unexplained, yet reptiles hold critical clues about vertebrate evolution. Turtles posses diverse chromosome numbers (2N = 28-66) derived from extensive genomic rearrangements, plus varied sex-determining mechanisms (genotypic and temperature-dependent). Here, we show that rates of evolution in turtle chromosome number are ~20-fold higher along phylogenetic branches where transitions between sex-determining mechanisms also occur, revealing a strong coevolution of these traits and making drift a less likely driver. Directional tests indicate that both traits evolved effectively in synchrony. These events occurred near global extremes in temperature shifts over the last 200 million years, although the role of climate change remains unknown at this point. Two alternative testable explanations for these patterns are proposed. First, selection for sex determination turnover may co-opt mechanisms (e.g., chromatin remodeling) favoring genomic rearrangements. Alternatively, chromosomal rearrangements underlying diploid number evolution may alter gene regulation enabling transitions in sex-determining mechanisms. Our data indicate that the evolution of sex determination is intimately linked to profound genomic changes underlying diploid number evolution, the ecological context of which remains intriguing.  相似文献   

20.
Sexual reproduction is one of the most taxonomically conserved traits, yet sex‐determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism’s sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature‐sensitive mutations in key sex‐determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号