首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used Ca2+-sensitive fluorescent dyes to monitor intracellular Ca2+ during mitosis in one-cell mouse embryos. We find that fertilized embryos generate Ca2+ transients at nuclear envelope breakdown (NEBD) and during mitosis. In addition, fertilized embryos arrested in metaphase using colcemid continue to generate Ca2+ transients. In contrast, parthenogenetic embryos produced by a 2-h exposure to strontium containing medium do not generate detectable Ca2+ transients at NEBD or in mitosis. However, when parthenogenetic embryos are cultured continuously in strontium containing medium Ca2+ transients are detected in mitosis but not in interphase. This suggests that mitotic Ca2+ transients are detected in the presence of an appropriate stimulus such as fertilization or strontium. The Ca2+ transient detected in fertilized embryos is not necessary for inducing NEBD since parthenogenetic embryos undergo nuclear envelope breakdown (NEBD). Also the first sign that NEBD is imminent occurs several minutes before the Ca2+ transient. The Ca2+ transient at NEBD appears to be associated with the nucleus since nuclear transfer experiments show that the presence of a karyoplast from a fertilized embryo is essential. Finally, we show that the intracellular Ca2+ chelator Bapta inhibits NEBD in fertilized and parthenogenetic embryos in a dose-dependent manner. These studies show that during mitosis there is an endogenous increase in Ca2+ releasing activity that leads to the generation of Ca2+ transients specifically during mitosis. The ability of Ca2+ buffers to inhibit NEBD regardless of the presence of global Ca2+ transients suggests that the underlying cell cycle-associated Ca2+ releasing activity may take the form of localized Ca2+ transients.  相似文献   

2.
Transient elevations in intracellular free Ca2+ are believed to signal the initiation of mitosis. This model predicts that mitosis might be arrested prior to nuclear envelope breakdown (NEB) or anaphase onset if intracellular Ca2+ concentration is buffered or dampened. Microinjection of a discrete dose of Ca2+ into the cell might then release the cell to resume mitotic cycling. Experimentally, one blastomere of two cell sand dollar (Echinaracnius parma) embryos was microinjected with Ca2+ buffers, Ca2+ solutions, or Ca2+ channel antagonists; the uninjected blastomere was the control. Cells were loaded with 10 pl doses of the Ca2+ buffer antipyrylazo III (ApIII) at specific times in the cell cycle to attempt a competitive inhibition of Ca2+-dependent steps in NEB and initiation of mitosis. Injection of 50 microM ApIII 6 min prior to NEB blocked NEB and further cell cycling. Injections of solutions between 0 and 30 microM ApIII were without observable effect. Control injections had no observable effect on the injected cell. Cells injected with 50 microM ApIII 2 min prior to the onset of anaphase in control cells were blocked in metaphase. Cells were sensitive to Ca2+ buffer injections 6 min prior to NEB (with a 40- to 45-sec duration), and 2 min prior to anaphase onset (with a 10- to 20-sec duration). Vital staining of these cells with H33342 demonstrated that they contained only one nucleus that had the same fluorescence intensity as seen prior to microinjection, and thus did not undergo DNA synthesis following the imposition of the Ca2+ buffer block to mitosis. Cells arrested in this fashion did not spontaneously resume mitotic cycling. This Ca2+ buffer-induced mitotic arrest was, however, experimentally reversible. Cells arrested with 50 microM ApIII 6 min prior to NEB could be returned to mitotic activity by injecting 300 microM CaCl2 5 min after the ApIII injection. The double injected cells resumed cycling, NEB, and mitosis after a delay of one cell cycle period, and remained one cell cycle out of phase with the sister (control) cell. Microinjection of antagonists of endomembrane Ca2+ channels inhibited NEB and anaphase onset in a concentration- and time-dependent fashion. The effective doses of compounds tested were 7 micrograms/ml ryanodine and 500 micrograms/ml TMB-8. These results indicate that a transient elevation of intracellular Ca2+ from endomembrane stores is required to initiate mitotic events, namely NEB and anaphase onset.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We have treated living, intact stamen hair cells from the spiderwort plant, Tradescantia virginiana, with 0.5 microgram/ml or 60 micrograms/ml 1,2-dioctanoylglycerol, a potent and permeant activator of protein kinase C, and have observed the rates of progression of mitosis from prophase through anaphase. We have found that in addition to the concentration used, the time of initial treatment with 1,2-dioctanoylglycerol defines the response by the cells. The cells rapidly undergo nuclear envelope breakdown when this diglyceride is added in very late prophase, 0 to approximately 8 min prior to the time of normal nuclear envelope breakdown. Anaphase onset occurs 28 min after nuclear envelope breakdown, rather than after the 33 min interval observed in untreated cells. Rapid progression through metaphase is also observed if cells are treated with 0.5 microgram/ml 1,2-dioctanoylglycerol during prometaphase, up to 15 min after nuclear envelope breakdown. The addition of 0.5 microgram/ml 1,2-dioctanoylglycerol in late metaphase, approximately 26 min after nuclear envelope breakdown, results in sister chromatid separation slightly ahead of its normal time, 33 min after nuclear envelope breakdown, and in precocious cell plate vesicle aggregation, 3-5 min earlier than that observed in untreated cells. Treatment of cells with 60 micrograms/ml of 1,2-dioctanoylglycerol at any point during the interval from 0 to approximately 5 min prior to nuclear envelope breakdown results in precocious entry into anaphase. If cells are treated with either 0.5 microgram/ml or 60 micrograms/ml 1,2-dioctanoylglycerol earlier than 20 min before nuclear envelope breakdown, they do not enter mitosis, but instead revert to interphase without dividing. When 1,2-dioctanoylglycerol is added at other times during mitosis, the rate of subsequent mitotic progression is dramatically slowed; the cells require greater than 55 min to progress from nuclear envelope breakdown to anaphase onset, though once in anaphase, the cells progress onward to cytokinesis at normal rates. Treatments o of cells with 1,3-dioctanoylglycerol at any point during prophase, prometaphase, or metaphase are without effect on the rate of subsequent mitotic progression. The shifts in response by cells treated at specific times with 1,2-dioctanoylglycerol during mid- and late metaphase may be indicative of the existence of one or more regulatory switch points (i.e., checkpoints) just prior to anaphase onset.  相似文献   

4.
The normally predictable duration of metaphase in stamen hair cells from the spiderwort, Tradescantia virginiana, is shortened significantly by treatment during prometaphase with either ruthenium red or Bay K-8644. Ruthenium red is an inhibitor of Ca2+ translocation and Bay K-8644 is a Ca2+-channel agonist. Their action on mitotic progression appears to involve a rise in the cytosolic Ca2+ level that in turn has a pronounced effect on the duration of metaphase. The timing of addition of ruthenium red for accelerated progression through metaphase is less critical than that for Bay K-8644 which will promote metaphase progression only if added 0 to 12 min after nuclear envelope breakdown. In contrast, ruthenium red can be added at any time from approximately 10 min prior to nuclear envelope breakdown up to 25 min afterward. A reduction of extracellular Ca2+ is sufficient by itself to prolong the duration of metaphase in stamen hair cells, but the duration of metaphase by ruthenium red or Bay K-8644 is significantly shortened in identical solutions with Ca2+ buffered at levels greater than 1 microM. Metaphase progression rates with either agent are independent of changes in extracellular Mg2+ levels. Correlated with the precocious entry into anaphase was rapid formation of the spindle and a marked reduction in spindle rotation during metaphase. Interestingly, we observed a modest increase in the rate of anaphase chromosome separation, but the appearance of cell plate vesicles at the site of incipient cell plate formation occurred normally approximately 19 min after anaphase onset. Similarly, the initial appearance of cell plate vesicles in Bay K-8644 was normal, approximately 19 min after the onset of anaphase. These results further implicate shifts in cytosolic Ca2+ in the regulation of mitotic events.  相似文献   

5.
During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus-free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.  相似文献   

6.
Cell cycle in various types of cells and in early embryos is often accompanied by transient changes in the concentration of free cytosolic calcium. In the present study, using fluorescent indicator fura-2, we demonstrate that Ca(2+) oscillates cyclically with an amplitude of about 100 nM and a period of mitotic cycle in cell-free Xenopus egg cycling extracts. It peaks in early metaphase just preceding mitotic reactivation of Cdc2 kinase and MAPK and reaches a minimum in interphase. The source of Ca(2+) in the extracts is a particulate fraction containing egg intracellular Ca(2+) stores, since the addition of a calcium-mobilizing second messenger, inositol 1,4,5-trisphosphate (IP3), induced a transient increase in Ca(2+). The inclusion of heparin, an IP3 receptor antagonist, or ultrafiltration of the extracts prevented Ca(2+)-releasing activity of IP3. The depletion of Ca(2+) in the extracts by the calcium chelator BAPTA resulted in the blockade of cell cycle at different stages, depending on the time of drug administration. The addition of BAPTA late in interphase blocked cell cycle at mitotic entry in prophase, whereas its application in anaphase or telophase blocked the extracts in early interphase. BAPTA administration in metaphase before transition to anaphase brought about a metaphase-like arrest in the cycling extracts. Inhibition of IP3-induced calcium release by heparin also arrested cell cycle progression in the cycling extracts.  相似文献   

7.
Swiss 3T3 fibroblasts and LLC-PK epithelial cells in prometaphase or metaphase were either injected with fura-2 or loaded with the acetoxymethyl ester derivative of fura-2 (fura-2 AM) and monitored by microspectrofluorimetry. With both methods of loading, we observed two aspects of intracellular free calcium (Cai) metabolism. (a) Most fibroblasts and epithelial cells exhibited a gradual rise from 75 nM in metaphase to 185 nM during cleavage, returning to baseline by early G1. (b) Mitotic Swiss 3T3 cells exhibited rapid transient Cai changes, similar to those previously reported [Poenie, M., J. Alderton, R. Y. Tsien, R. A. Steinhardt. 1985. Nature (Lond.). 315:147-149; Poenie, M., J. Alderton, R. Steinhardt, and R. Tsien. 1986. Science (Wash. DC). 233:886-889; Ratan, R., and M. L. Shelanski. 1988. J. Cell Biol. 107:993]. These Cai transients occurred repetitively, often beginning in metaphase and continuing long after daughter cell formation. Eliminating serum or calcium from the medium abolished the transients, but delayed neither the gradual Cai elevation nor anaphase onset. Co-injection of EGTA or 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) with fura-2 in calcium-free medium, but not in calcium containing medium, blocked both anaphase and the sustained Cai elevation in almost all cases. Blocked cells were rescued by returning calcium to the medium, whereupon Cai slowly but steadily rose as the cell entered anaphase. Spindle microtubules persisted through the EGTA block. Depolymerization of spindle microtubules by nocodazole also reversibly blocked anaphase onset and the sustained Cai elevation, but did not block transients. This study has revealed the following: (a) anaphase in mammalian fibroblasts and epithelial cells is not triggered by brief calcium transients; (b) anaphase is a calcium-modulated event, usually accompanied by a sustained elevation of Cai above 50 nM; (c) the elevation of Cai is dependent upon an intact spindle; and (d) fibroblasts progress through mitosis by drawing upon either intracellular or extracellular sources of calcium.  相似文献   

8.
Stamen hair cells of Tradescantia exhibit remarkable precision in the timing of their mitotic events. This precision is altered dramatically with treatment in 50 microM to 1 mM LiCl, an inhibitor of the polyphosphoinositide cycle. Mitotic progression is altered as a function of the time of treatment with LiCl. If cells are treated during late prophase, greater than 80% fail to enter metaphase. Most of the cells that undergo nuclear envelope breakdown become arrested in metaphase. Treatment with LiCl earlier in prophase also results in metaphase arrest. Metaphase arrest can be reversed by the addition of 10 microM myo-inositol or 100 microM CaCl2 to the extracellular medium. The timing of reversal by myo-inositol takes 10 to 14 min while CaCl2 promotes anaphase onset in 2 to 5 min. The difference in kinetics for reversal between these two treatments suggests that myo-inositol addition overrides a biochemical pathway while Ca2+ addition supplants a phosphoinositide-mediated rise in the cation that may be necessary for anaphase onset. Buffer without myo-inositol or CaCl2 is insufficient for reversal. If the cells are treated with LiCl in mid-late-metaphase, at least 5 min prior to the expected time of anaphase onset, sister chromatids split at the normal time, 33 +/- 4 min after nuclear envelope breakdown, but further chromosome separation is arrested. Anaphase chromosome movement can be restored by treatment with either 10 microM myo-inositol or 100 microM CaCl2 in the medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To analyze the effects of the HIV-Tat-tubulin interaction, we microinjected HIV-Tat purified protein into Drosophila syncytial embryos. Following the Tat injection, altered timing of the cortical nuclear cycles was observed; specifically, the period between the nuclear envelope breakdown and anaphase initiation was lengthened as was the period between anaphase initiation and the formation of the next nuclear envelope. These two periods correspond to kinetochore alignment at metaphase and to mitosis exit, respectively. We also demonstrated that these two delays are the consequence of damage specifically induced by Tat on kinetochore alignment and on the timing of sister chromatid segregation at anaphase. Furthermore, we show that the expression of Tat in Drosophila larvae brain cells produces a significant percentage of polyploid and aneuploid cells. The results reported here indicate that Tat impairs the mitotic process and that Tat-tubulin interaction appears to be responsible for the observed defects. The presence of polyploid and aneuploid cells is consistent with a delay or arrest in the M phase of a substantial fraction of the cells expressing Tat, suggesting that mitotic spindle checkpoints are overridden following Tat expression.  相似文献   

10.
Nifedipine reversibly arrests mitosis in stamen hair cells of tradescantia   总被引:6,自引:0,他引:6  
Mitotic stamen hair cells of Tradescantia virginiana (cv. Zwanenburg Blue) become arrested in metaphase following a 30-min treatment with 10 to 100 microM nifedipine, a Ca2+-channel entry blocker. The time interval between nuclear envelope breakdown and anaphase onset in untreated cells is approximately 33 min +/- 4 min; nifedipine extends this "metaphase transit time" beyond 70 min. Nifedipine can be photoreversed in situ by exposure to 365 nm light. UV illumination inactivates the drug, its inhibitory effect on Ca2+ is abolished, and cells arrested in metaphase enter anaphase within 3 to 18 min of UV exposure if CaCl2 is present in the medium. The interval between UV illumination and anaphase onset is inversely related to the extracellular concentration of CaCl2. If CaCl2 is not added to the medium, the interval between UV exposure and anaphase onset is usually longer than 18 min. The sole addition of 100 microM CaCl2 to the medium is insufficient to reverse nifedipine inhibition; unless the cells are exposed to UV light, anaphase will not commence. The threshold concentration of free Ca2+ for rapid anaphase onset (less than 10 min after UV photoreversal) is between 1 and 10 microM. These results suggest that an influx of Ca2+ from the extracellular medium to the cytosolic compartment is necessary for normal progression from metaphase to anaphase and that this influx may serve as a trigger for chromosome separation.  相似文献   

11.
Summary This work examines mitosis in root-tip cells ofTriticum turgidum treated with the RNA synthesis inhibitor ethidium bromide, using tubulin immunolabeling and electron microscopy. The following aberrations were observed in ethidium bromideaffected cells: (1) incomplete chromatin condensation and nuclear-envelope breakdown; (2) delay of preprophase microtubule band maturation; (3) preprophase microtubule band assembly in cells displaying an interphase appearance of the nucleus; (4) prevention of the prophase spindle formation, caused by inhibition of perinuclear microtubule (Mt) formation and/or inability of the perinuclear Mts to assume bipolarity; (5) organization of an atypical metaphase spindle which is unable to arrange the chromosomes on the equatorial plane; (6) formation of an atypical perinuclear metaphase spindle in cells in which nuclear-envelope breakdown has been almost completely inhibited; (7) inhibition of the anaphase spindle formation as well as of anaphase chromosome movement; (8) disorganization of the atypical mitotic spindle during transition from mitosis to cytokinesis. The observations favor the following hypotheses. Nucleation of prophase spindle Mts is related to the mechanism that causes nuclear-envelope breakdown. The mitotic poles lack Mtnucleating and -organizing properties, and their function does not account for prophase and metaphase spindle assembly. The organization of the prophase spindle is not a prerequisite for the formation of the metaphase spindle; the metaphase spindle seems to be formed de novo by Mts nucleated on the nuclear envelope and/or in the immediate vicinity of chromosomes.Abbreviations 5-AU 5-aminouracil - EB ethidium bromide - EM electron microscopy - k-Mt kinetochore microtubule - Mt microtubule - MTOC microtubule-organizing center - NE nuclear envelope - NEB nuclear-envelope breakdown - PPB preprophase band of microtubules  相似文献   

12.
The kinesin-like calmodulin (CaM) binding protein (KCBP), a minus end-directed microtubule motor protein unique to plants, has been implicated in cell division. KCBP is negatively regulated by Ca(2)+ and CaM, and antibodies raised against the CaM binding region inhibit CaM binding to KCBP in vitro; therefore, these antibodies can be used to activate KCBP constitutively. Injection of these antibodies into Tradescantia virginiana stamen hair cells during late prophase induces breakdown of the nuclear envelope within 2 to 10 min and leads the cell into prometaphase. However, mitosis is arrested, and the cell does not progress into anaphase. Injection of antibodies later during cell division has no effect on anaphase transition but causes aberrant phragmoplast formation and delays the completion of cytokinesis by approximately 15 min. These effects are achieved without any apparent degradation of the microtubule cytoskeleton. We propose that during nuclear envelope breakdown and anaphase, activated KCBP promotes the formation of a converging bipolar spindle by sliding and bundling microtubules. During metaphase and telophase, we suggest that its activity is downregulated.  相似文献   

13.
Summary— Immunofluorescence and immunoelectron microscopy indicated that the antibody raised against the nuclear antigen Ki-67 of mammalian cells recognized antigenic determinants of early Drosophila embryos, localized on the outside of the nuclear envelope. Hence, the nuclear envelope of Drosophila appears to share a similar epitope with the chromosome scaffold of mitotic mammalian cells. With the progression of mitosis the antigen persisted around the mitotic spindle region and was also found in the pole regions at metaphase and anaphase. The antibody also stained the equatorial regions of the spindles from anaphase to late telophase. The antibody may therefore be used as a biochemical marker of the nuclear envelope for studying nuclear membrane biogenesis and behavior during the mitotic divisions of the Drosophila embryo.  相似文献   

14.
The formation of the nuclear envelope in the mitosis ofSpirogyra was studied with an electron microscope. The nuclear envelope was disrupted around the spindle equator in the metaphase. Many small vesicles were observed in the metaphase spindle. These vesicles surrounded the masses of chromosomes and nucleolar substance in the early anaphase, and they fused with each other to form daughter nuclear envelopes during the early anaphase. The formation of new envelopes from small vesicles at such an early mitotic anaphase is reported here for the first time. The possible origin of these vesicles is also discussed.  相似文献   

15.
When intracellular free Ca2+ concentration [( Ca2+]i) was monitored in fura2-loaded Swiss 3T3 cells, endothelin increased [Ca2+]i in a dose-dependent manner; after the addition of endothelin, an initial transient peak was observed immediately and was followed by a sustained increase in [Ca2+]i lasting at least 5 min. 45Ca2+ efflux and influx experiments in endothelin-stimulated Swiss 3T3 cells revealed that the change in [Ca2+]i could be explained by a dual mechanism; an initial transient peak induced mainly by the release of Ca2+ from intracellular stores and the sustained increase by an influx of extracellular Ca2+. Cellular generation of inositol 1,4,5-trisphosphate and cyclic AMP were not induced by endothelin, suggesting that other cellular mediators with the capacity to release Ca2+ from intracellular stores play a significant role in the signal transduction pathway of endothelin in Swiss 3T3 cells.  相似文献   

16.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

17.
《The Journal of cell biology》1993,123(6):1661-1670
Recent evidence shows that the COOH-terminal CaaX motif of lamins is necessary to target newly synthesized proteins to the nuclear envelope membranes. Isoprenylation at the CaaX-cysteine has been taken to explain the different fates of A- and B-type lamins during cell division. A-type lamins, which loose their isoprenylation shortly after incorporation into the lamina structure, become freely soluble upon mitotic nuclear envelope breakdown. Somatic B-type lamins, in contrast, are permanently isoprenylated and, although depolymerized during mitosis, remain associated with remnants of nuclear envelope membranes. However, Xenopus lamin B3, the major B-type lamin of amphibian oocytes and eggs, becomes soluble after nuclear envelope breakdown in meiotic metaphase. Here we show that Xenopus lamin B3 is permanently isoprenylated and carboxyl methylated in oocytes (interphase) and eggs (meiotic metaphase). When transfected into mouse L cells Xenopus lamin B3 is integrated into the host lamina and responds to cell cycle signals in a normal fashion. Notably, the ectopically expressed Xenopus lamin does not form heterooligomers with the endogenous lamins as revealed by a coprecipitation experiment with mitotic lamins. In contrast to the situation in amphibian eggs, a significant portion of lamin B3 remains associated with membranes during mitosis. We conclude from these data that the CaaX motif-mediated modifications, although necessary, are not sufficient for a stable association of lamins with membranes and that additional factors are involved in lamin-membrane binding.  相似文献   

18.
The nuclear lamins are directed from the cytoplasm to chromosomes as part of the maturation pathway of the interphase nucleoskeleton. In mitosis, the three polypeptides lamin A, B and C were found in the cytoplasm from prophase until anaphase and shifted to chromosomal surfaces at telophase (Ely, D'Arcy and Jost, 1978; Gerace, Blum and Blobel, 1978). We show here that early events in nucleoskeleton formation could be regulated by extracellular pH. When exponentially growing tissue culture cells and cells arrested in mitosis were exposed to different extracellular pH values, three patterns of distribution of lamins were observed in mitotic cells: exclusively cytoplasmic distribution of mitotic lamins at low pH (6.8 to 7.3); a premature association of a lamin subfraction with metaphase chromosomes at intermediate pH 7.5; a more prominent relocation of lamins onto chromosomes in metaphase and in disorganized metaphase at pH 8.0. Reassembly of lamins occurred at telomeric ends of mitotic chromosomes followed by a lateral fusion to form a nuclear cage. Using immunogold localization, we show that pH-induced, premature, partial deposition of lamins onto condensed chromosomes may occur prior to the formation of the bilamellar nuclear envelope. These results suggest that the pH-induced redistribution of lamins acts to trigger early events of mitosis to interphase transition.  相似文献   

19.
Monospecific antibodies to an intracellular membrane-bound Ca2+-ATPase were used to localize the enzyme in PtK-cells in interphase and in mitosis as well. In interphase the protein is distributed as small dots and rods in the cytoplasm with an increased concentration around the nucleus. Neither the plasma membrane nor the nuclear envelope are stained. In mitotic cells the Ca2+-ATPase is localized around the spindle rather than in it. The results are in agreement with the proposed function of enzyme as an essential part of the intracellular Ca2+-regulating system controlling Ca2+ in the respective domains of the cell.  相似文献   

20.
The small GTPase Ran has multiple roles during the cell division cycle, including nuclear transport, mitotic spindle assembly, and nuclear envelope formation. However, regulation of Ran during cell division is poorly understood. Ran-GTP is generated by the guanine nucleotide exchange factor RCC1, the localization of which to chromosomes is necessary for the fidelity of mitosis in human cells. Using photobleaching techniques, we show that the chromosomal interaction of human RCC1 fused to green fluorescent protein (GFP) changes during progression through mitosis by being highly dynamic during metaphase and more stable toward the end of mitosis. The interaction of RCC1 with chromosomes involves the interface of RCC1 with Ran and requires an N-terminal region containing a nuclear localization signal. We show that this region contains sites phosphorylated by mitotic protein kinases. One site, serine 11, is targeted by CDK1/cyclin B and is phosphorylated in mitotic human cells. Phosphorylation of the N-terminal region of RCC1 inhibits its binding to importin alpha/beta and maintains the mobility of RCC1 during metaphase. This mechanism may be important for the localized generation of Ran-GTP on chromatin after nuclear envelope breakdown and may play a role in the coordination of progression through mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号