首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The mazEF locus of Escherichia coil located in an operon together with the upstream relA gene (encoding ATP:GTP 3'-pyrophosphotransferase; (p)ppGpp synthetase), encodes an antitoxin/toxin system which might play a role in programmed cell death under stress and starvation conditions at high cell densities. By homology searches, chromosomally encoded orthologous systems were identified in a variety of bacteria, sometimes without the MazE-like antitoxin, and several bacterial species possess multiple MazEF-like systems (paralogs). In many gram positive bacteria, the mazEF-locus is located directly upstream of the sigB (stress sigma factor sigmaB) operon in a putative operon together with the upstream dal (aIr) gene (encoding D-alanine racemase). The acidic antitoxins are less conserved than the basic toxins. The differences in genomic organization of the mazEFloci in E. coli versus those in gram positive bacteria might indicate their association with different stress response regulons in these organisms. A study on the sigmaB operon of Staphylococcus aureus showed that the mazF gene of this organism is cotranscribed with the sigmaB operon in response to heat shock, providing the first example that the expression of the mazEFlocus might be indeed associated with stress responses.  相似文献   

8.
9.
10.
11.
12.
13.
14.
The C-terminal regions (CT) of Pfam PF04740 proteins share significant sequence identity with the toxic CdiA-CT effector domains of contact-dependent growth inhibition (CDI) systems. In accord with this homology, we find that several PF04740 CT domains inhibit cell growth when expressed in Escherichia coli. This growth inhibition is specifically blocked by antitoxin proteins encoded downstream of each PF04740 gene. The YobL-CT, YxiD-CT and YqcG-CT domains from Bacillus subtilis 168 have cytotoxic RNase activities, which are neutralized by the binding of cognate YobK, YxxD and YqcF antitoxin proteins, respectively. Our results show that PF04740 proteins represent a new family of toxin/antitoxin pairs that are widely distributed in Gram-positive bacteria.  相似文献   

15.
16.
Kamada K  Hanaoka F 《Molecular cell》2005,19(4):497-509
The eubacterial chromosome encodes various addiction modules that control global levels of translation through RNA degradation. Crystal structures of the Escherichia coli YefM2 (antitoxin)-YoeB (toxin) complex and the free YoeB toxin have been determined. The structure of the heterotrimeric complex reveals an asymmetric disorder-to-order recognition strategy, in which one C terminus of the YefM homodimer exclusively interacts with an atypical microbial ribonuclease (RNase) fold of YoeB. Comparison with the YefM-free YoeB structure indicates a conformational rearrangement of the RNase catalytic site of YoeB, induced by interaction with YefM. Complementary biochemical experiments demonstrate that the YoeB toxin has an in vitro RNase activity that preferentially cleaves at the 3' end of purine ribonucleotides.  相似文献   

17.
Toxin–antitoxin (TA) systems are widespread genetic modules in the genomes of bacteria and archaea emerging as key players that modulate bacterial physiology. They consist of two parts, a toxic component that blocks an essential cellular process and an antitoxin that inhibits this toxic activity during normal growth. According to the nature of the antitoxin and the mode of inhibition, TA systems are subdivided into different types. Here, we describe the characterization of a type II‐like TA system in Escherichia coli called EzeT. While in conventional type II systems the antitoxin is expressed in trans to form an inactive protein–protein complex, EzeT consists of two domains combining toxin and cis‐acting antitoxin functionalities in a single polypeptide chain. We show that the C‐terminal domain of EzeT is homologous to zeta toxins and is toxic in vivo. The lytic phenotype could be attributed to UDP‐N‐acetylglucosamine phosphorylation, so far only described for type II epsilon/zeta systems from Gram‐positive streptococci. Presence of the N‐terminal domain inhibits toxicity in vivo and strongly attenuates kinase activity. Autoinhibition by a cis‐acting antitoxin as described here for EzeT‐type TA systems can explain the occurrence of single or unusually large toxins, further expanding our understanding of the TA system network.  相似文献   

18.
19.
Bacteria have obtained a variety of resistance mechanisms including toxin‐antitoxin (TA) systems against bacteriophages (phages), whereas phages have also evolved to overcome bacterial anti‐phage mechanisms. Dmd from T4 phage can suppress the toxicities of homologous toxins LsoA and RnlA from Escherichia coli, representing the first example of a phage antitoxin against multiple bacterial toxins in known TA systems. Here, the crystal structure of LsoA‐Dmd complex showed Dmd is inserted into the deep groove between the N‐terminal repeated domain (NRD) and the Dmd‐binding domain (DBD) of LsoA. The NRD shifts significantly from a ‘closed’ to an ‘open’ conformation upon Dmd binding. Site‐directed mutagenesis of Dmd revealed the conserved residues (W31 and N40) are necessary for LsoA binding and the toxicity suppression as determined by pull‐down and cell toxicity assays. Further mutagenesis identified the conserved Dmd‐binding residues (R243, E246 and R305) of LsoA are vital for its toxicity, and suggested Dmd and LsoB may possess different inhibitory mechanisms against LsoA toxicity. Our structure‐function studies demonstrate Dmd can recognize LsoA and inhibit its toxicity by occupying the active site possibly via substrate mimicry. These findings have provided unique insights into the defense and counter‐defense mechanisms between bacteria and phages in their co‐evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号