首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
fabD mutants of Escherichia coli contain a thermolabile malonyl-coenzyme A-acyl carrier protein transacylase which causes defective fatty acid synthesis and temperature-sensitive growth. By conjugation and P1 transduction the fabD locus has now been mapped at min 24, between pyrC and purB and close to cat. The order of sites is tentatively given as pyrC, cat, fabD, and purB, though the orientation of cat and fabD could be reversed. The possible relationship of fabD with another mutation lying in this region and also affecting acid synthesis is discussed. In the course of these studies we also confirmed the location of the fabA gene, determined that poaA lies between fabA and pyrC, and inadvertently found that the pyr mutation in strain AT3143 is probably pyrF and not pyrC.  相似文献   

2.
The pem locus is responsible for stable maintenance of plasmid R100 and consists of two genes, pemI and pemK. The pemK gene product is a growth inhibitor, while the pemI gene product is a suppressor of this inhibitory function. We found that the PemI amino acid sequence is homologous to two open reading frames from Escherichia coli called mazE and orf-83, which are located at 60 and 100 min on the chromosome, respectively. We cloned and sequenced these loci and found additional open reading frames, one downstream of each pemI homolog, both of which encode proteins homologous to PemK. The pem locus homolog at 60 min was named chpA and consists of two genes, chpAI and chpAK; the other, at 100 min, was named chpB and consists of two genes, chpBI and chpBK. The distal portion of chpBK was found to be adjacent to the ppa gene that encodes pyrophosphatase, whose map position had not been previously determined. We then demonstrated that the chpAK and chpBK genes encode growth inhibitors, while the chpAI and chpBI genes encode suppressors for the inhibitory function of the ChpAK and ChpBK proteins, respectively. These E. coli pem locus homologs may be involved in regulation of cell growth.  相似文献   

3.
The ampicillin resistance locus of three different ampicillin-resistant, temperature-sensitive Escherichia coli mutants was mapped between proC and purE and does not correspond to any of the known genes in this region. The mutant gene responsible for the temperature sensitivity and consequent morphological changes in each mutant strain was not located in the same 5-min region, even though the two mutants characteristics co-reverted at a very high frequency.  相似文献   

4.
PfkA locus of Escherichia coli.   总被引:6,自引:5,他引:1       下载免费PDF全文
pfkA was know, on the basis of three mutants, as the likely locus of phosphofructokinase in Escherichia coli, and the unlinked pfkB1 mutation suppressed these mutations by restoring some enzyme activity (Morrissey and Fraenkel, 1972). We now report a new search for the complete inactivation of pfkA (e.g., by deletion or amber mutation), done to assess whether the pfkB1 suppression is by an independent enzyme, phosphofructokinase activity 2 (Fraenkel, Kotlarz, and Buc, 1973). Ten new phosphofructokinase mutants all were at pfkA, rather than at pfkB or pfkC. One of them (pfkA9) gave temperature-sensitive reverants with heat-labile enzyme. Another (pfkA11) proved genetically to be a nonsense mutation, but showed no restored activity when suppressed by supF. However, even unsuppressed it was found to contain an enzyme related to phosphofructokinase activity 1 kinetically (more allosteric), physically (almot identical subunit), and antigenically. All the pfkA mutants apparently contained cross-reacting material to activity 1. All (including pfkA11) were suppressed by the pfkB1 mutation. Several results support the idea that pfkA is the structural gene for the main phosphofructokinase of E. coli (activity 1), but that there is some restriction to its complete inactivation.  相似文献   

5.
A mutant of Escherichia coli with a delayed relaxed phenotype very similar to that of a previously described relB mutant has been obtained using a new selection procedure. The mutation giving rise to this phenotype has been shown to map at 34.5 min and to be 12% cotransducible with man. It is recessive, revertible, and most likely an allele of the relB gene.  相似文献   

6.
The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.  相似文献   

7.
Mutants of Escherichia coli defective in the newly discovered mdoA locus are blocked at an early stage in the biosynthesis of membrane-derived oligosaccharides. The mutation has now been mapped and found to be located near 23 min on the E. coli chromosome between putA and pyrC. The mdoA mutants are defective in the membrane-localized component of the glucosyl transferase system described by Weissborn and Kennedy (A. C. Weissborn and E. P. Kennedy, Fed. Proc. 42:2122, 1983).  相似文献   

8.
9.
The tyrT (tRNA(1TYr)) locus of Escherichia coli B differs structurally from that of K-12 strains by the absence of 2 of 3.14 terminal repeat sequences.  相似文献   

10.
Tandem translation starts in the cheA locus of Escherichia coli.   总被引:19,自引:12,他引:7       下载免费PDF全文
The cheA locus of Escherichia coli encodes two protein products, CheAL and CheAS. The nucleotide sequences of the wild-type cheA locus and of two nonsense alleles confirmed that both proteins are translated in the same reading frame from different start points. These start sites were located on the coding sequence by direct determination of the amino-terminal sequences of the two CheA proteins. Both starts are flanked by inverted repeats that may play a role in regulating the relative expression rates of the CheA proteins through alternative mRNA secondary structures.  相似文献   

11.
Characterization of the nadR locus in Escherichia coli   总被引:4,自引:0,他引:4  
  相似文献   

12.
Genetic locus for ribonuclease I in Escherichia coli.   总被引:14,自引:7,他引:7       下载免费PDF全文
  相似文献   

13.
We tried some improvement of inosine production using an inosine-producing mutant of Escherichia coli which is deficient in purF (phosphoribosylpyrophosphate (PRPP) amidotransferase gene), purA (succinyl-adenosine 5'-monophosphate (AMP) synthetase gene), deoD (purine nucleoside phosphorylase gene), purR (purine repressor gene) and add (adenosine deaminase gene), and harboring the desensitized PRPP amidotransferase gene as a plasmid. The guaB (inosine 5'-monophosphate (IMP) dehydrogenase gene) disruption brought about a slightly positive effect on the inosine productivity. Alternatively, the gsk (guanosine-inosine kinase gene) disruption caused a considerable amount of guanosine accumulation together with a slight increase in the inosine productivity. The further addition of guaC (guanosine 5'-monophosphate (GMP) reductase gene) disruption did not lead to an increased guanosine accumulation, but brought about the decrease of inosine accumulation.  相似文献   

14.
We have cloned the Escherichia coli phoP gene, a member of the family of environmentally responsive two-component systems, and found its deduced amino acid sequence to be 93% identical to that of the Salmonella typhimurium homolog, which encodes a major virulence regulator necessary for intramacrophage survival and resistance to cationic peptides of phagocytic cells. The phoP gene was mapped to kilobase 1202 on the Kohara map (25-min region) of the E. coli genome (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) and found to be transcribed in a counterclockwise direction. Both E. coli and S. typhimurium phoP mutants were more sensitive than their isogenic wild-type strains to the frog-derived antibacterial peptide magainin 2, suggesting a role for PhoP in the response to various stresses in both enteric species.  相似文献   

15.
When a strain (arcB-) of Escherichia coli, unable to synthesize the iron transport compound enterochelin, was transduced to tonB-, it became resistant to phage phi80 and simultaneously lost the growth response to enterochelin and the ability to transport its iron complex. However, enterochelin precursors (shikimate and 2,3-dihydroxybenzoate) still supported growth, via the synthesis of enterochelin. Dihydroxybenzoate was a better growth factor at a low concentration than it was at higher levels. The evidence suggests that tonB- strains lack an outer membrane component necessary both for the uptake of ferric-enterochelin and for the adsorption of phage phi80. Thus, although ferric-enterochelin cannot penetrate the cell surface from outside, the complex that is formed within the envelope is transported normally into the cell. The aroB-, tonB- mutant also lacked growth reponses to citrate and various hydroxamate siderochromes, which supported growth in the tonB+ parent strain via inducible transport systems for their ferric complexes. The aroB-, tonB- mutant was unable to transport iron in the presence of citrate, but the low-affinity uptake of uncomplexed iron and the transport of amino acids and phosphate were unimpaired. The tonB locus, thus, affects all the known active transport systems for iron, possibly indicating that they share some common outer membrane component.  相似文献   

16.
The biochemical and physiological aspects of hexuronate transport in Erwinia carotovora were studied to approach the genetic regulation of the hexuronate degradative pathway in this bacterial species. An active transport system for glucuronate and galacturonate uptake exists in E. carotovora. The glucuronate entry reaction displayed saturation kinetics with an apparent Km of 0.05 mM (at 25 degrees C; pH 7). Galacturonate appeared to be a competitive inhibitor of glucuronate uptake with a Ki of 0.1 mM. Glucuronate permeation was not induced by glucuronate itself in wild-type strains. Galacturonate induced the uptake of glucuronate (about fivefold). The induced synthesis of the transport system was sensitive to catabolite repression by glucose. Mutants able to grow on glucuronate as the sole carbon source showed constitutive synthesis of the hexuronate transport system.  相似文献   

17.
Summary The effect of thermal deactivation on disruption efficiency and cell-debris size has been investigated for E. coli. Disruption for thermally-deactivated cells was substantially lower than for stationary cells. Cell-debris size was also larger. Thermal deactivation has a significant impact on subsequent downstream operations such as homogenisation and centrifugation.  相似文献   

18.
Escherichia coli has DNA restriction systems which are able to recognize and attack modified cytosine residues in the DNA of incoming bacteriophages and plasmids. The locus for the McrA/RglA system of modified cytosine restriction was located near the pin gene of the defective element, e14. Hence, loss of the e14 element through abortive induction after UV irradiation caused a permanent loss of McrA restriction activity. e14 DNA encoding McrA restriction was cloned and sequenced to reveal a single open reading frame of 831 bp with a predicted gene product of 31 kDa. Clones expressing the complete open reading frame conferred both McrA and RglA phenotypes; however, a deletion derivative was found which complemented RglA restriction against nonglucosylated T6gt phage but did not complement for McrA restriction of methylated plasmid DNA. Possible explanations for this activity and a comparison with the different organization of the McrB/RglB restriction system are discussed.  相似文献   

19.
Mapping of nrdA and nrdB in Escherichia coli K-12.   总被引:20,自引:18,他引:2       下载免费PDF全文
The structural genes coding for the B1 and B2 subunits of the enzyme ribonucleoside diphosphate reductase, nrdA (formerly designated dnaF) and nrdB, respectively, have been mapped in Escherichia coli. They are located at approximately 48 min. The gene order in this region of the E. coli chromosome was found to be purF glpT nrdB nrdA nalA cdd dcd his.  相似文献   

20.
Genetic characterization of the metK locus in Escherichia coli K-12.   总被引:10,自引:8,他引:2       下载免费PDF全文
Three independently isolated metK mutants have been shown to have leisions lying between speB and glc near 57 min on the Escherichia coli chromosome. Two deletions result in a lack of the metC gene product but neither extends into the metK glc region. The three metK mutations are recessive to the wild-type allele carried on the KLF16 episome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号