首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas solanacearum is an important phytopathogen that produces a variety of extracellular enzymes. Previous reports suggested that one of these, a 43-kDa beta-1,4-endoglucanase (EGL), is initially synthesized with a 45-residue leader sequence that is removed during export. Experiments with globomycin presented here also suggest that the primary precursor of EGL (ppEGL) has a 45-residue leader sequence but that only the first 19 residues of the leader sequence are removed by signal peptidase II during initial export across the inner membrane. Further analysis suggested that the resultant 46-kDa intermediate precursor (pEGL) is a transient fatty acylated lipoprotein and is located on the periplasmic side of the inner membrane of P. solanacearum. Although Escherichia coli could synthesize ppEGL, modify it with palmitate, and remove the first 19 residues of the leader sequence during export across the inner membrane, only P. solanacearum could export pEGL across the outer membrane and remove the remaining 26 residues of the leader sequence producing the mature, extracellular EGL. The second step of the export process requires export machinery not present in E. coli. To our knowledge this represents the first example of a leader sequence with two distinct parts, one removed during export across the inner membrane and the other removed during export across the outer membrane.  相似文献   

2.
The pglA gene encodes a 52-kilodalton extracellular polygalacturonase (PGA) which is associated with the phytopathogenic virulence of Pseudomonas solanacearum. The nucleotide sequence of pglA and the putative amino acid sequence of the PGA protein were determined. A computer search identified a 150-residue region of PGA which was similar (41%) to the amino acid sequence of a region of the PG-2A polygalacturonase from tomato. Comparison of the amino terminus of the pglA open reading frame with the actual amino-terminal sequence of purified extracellular PGA suggested that pglA is initially translated as a higher-molecular-mass precursor with a 21-residue amino-terminal signal sequence. Localization of various pglA-phoA fusion proteins in Escherichia coli and P. solanacearum indicated that the 21-residue leader sequence directs the export of PhoA only as far as the periplasm of both bacteria. Deletion of the last 13 residues of PGA eliminated its catalytic activity, as well as its ability to be exported outside of the P. solanacearum cell. Our results suggest that PGA excretion occurs in two steps. The first step involves a signal sequence cleavage mechanism similar to that used for periplasmic proteins and results in export of PGA across the inner membrane; the second step (transit of the outer membrane) occurs by an unknown mechanism requiring sequences from the mature PGA protein and biochemical factors absent from E. coli.  相似文献   

3.
4.
The activity of bacterial alkaline phosphatase (PhoA) is dependent on it being exported across the plasma membrane. A plasmid vector (pJEM11) allowing fusions between phoA and genes encoding exported proteins was constructed to study protein export in mycobacteria. Introduction of the Mycobacterium fortuitum beta-lactamase gene (blaF*) into this vector led to the production in M. smegmatis of protein fusions with PhoA activity. A genomic library from M. tuberculosis was constructed in pJEM11 and screened in M. smegmatis for clones with PhoA activity. Sequences of the M. tuberculosis inserts directing the production of protein fusions in these PhoA-positive clones were determined. They include part of the already-known exported 19-kDa lipoprotein, a sequence with similarities to the exported 28-kDa antigen from M. leprae, a sequence encoding a protein sharing conserved amino acid motifs with stearoyl-acyl-carrier-protein desaturases, and unknown sequences. This approach thus appears to identify sequences directing protein export, and we expect that more extensive screening of such libraries will lead to a better understanding of protein export in M. tuberculosis.  相似文献   

5.
Neisseria gonorrhoeae prepilin export studied in Escherichia coli.   总被引:7,自引:5,他引:2       下载免费PDF全文
The pilE gene of Neisseria gonorrhoeae MS11 and a series of pilE-phoA gene fusions were expressed in Escherichia coli. The PhoA hybrid proteins were shown to be located in the membrane fraction of the cells, and the prepilin product of the pilE gene was shown to be located exclusively in the cytoplasmic membrane. Analysis of the prepilin-PhoA hybrids showed that the first 20 residues of prepilin can function as an efficient export (signal) sequence. This segment of prepilin includes an unbroken sequence of 8 hydrophobic or neutral residues that form the N-terminal half of a 16-residue hydrophobic region of prepilin. Neither prepilin nor the prepilin-PhoA hybrids were processed by E. coli leader peptidase despite the presence of two consensus cleavage sites for this enzyme just after this hydrophobic region. Comparisons of the specific molecular activities of the four prepilin-PhoA hybrids and analysis of their susceptibility to proteolysis by trypsin and proteinase K in spheroplasts allow us to propose two models for the topology of prepilin in the E. coli cytoplasmic membrane. The bulk of the evidence supports the simplest of the two models, in which prepilin is anchored in the membrane solely by the N-terminal hydrophobic domain, with the extreme N terminus facing the cytoplasm and the longer C terminus facing the periplasm.  相似文献   

6.
Lantibiotic and non-lantibiotic bacteriocins are synthesized as precursor peptides containing N-terminal extensions (leader peptides) which are cleaved off during maturation. Most non-lantibiotics and also some lantibiotics have leader peptides of the so- called double-glycine type. These leader peptides share consensus sequences and also a common processing site with two conserved glycine residues In positions -1 and 2. The double-glycine-type leader peptides are unrelated to the N-terminal signal sequences which direct proteins across the cytoplasmic membrane via the sec pathway. Their processing sites are also different from typical signal peptidase cleavage sites, suggesting that a different processing enzyme is involved. Peptide bacteriocins are exported across the cytoplasmic membrane by a dedicated ATP-binding cassette (ABC) transporter. Here we show that the ABC transporter is the maturation protease and that its proteolytic domain resides in the N-terminal part of the protein. This result demonstrates that the ABC transporter has a dual function: (i) removal of the leader peptide from its substrate, and (ii) translocation of its substrate across the cytoplasmic membrane. This represents a novel strategy for secretion of bacterial proteins.  相似文献   

7.
Excretion of the egl gene product of Pseudomonas solanacearum.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

8.
Leader peptidase   总被引:10,自引:1,他引:9  
The Escherichia coli leader peptidase has been vital for unravelling problems in membrane assembly and protein export. The role of this essential peptidase is to remove amino-terminal leader peptides from exported proteins after they have crossed the plasma membrane. Strikingly, almost all periplasmic proteins, many outer membrane proteins, and a few inner membrane proteins are made with cleavable leader peptides that are removed by this peptidase. This enzyme of 323 amino acid residues spans the membrane twice, with its large carboxyl-terminal domain protruding into the periplasm. Recent discoveries show that its membrane orientation is controlled by positively charged residues that border (on the cytosolic side) the transmembrane segments. Cleavable pre-proteins must have small residues at -1 and a small or aliphatic residue at -3 (with respect to the cleavage site). Leader peptidase does not require a histidine or cysteine amino acid for catalysis. Interestingly, serine 90 and aspartic acid 153 are essential for catalysis and are also conserved in a mitochondrial leader peptidase, which is 30.7% homologous with the bacterial enzyme over a 101-residue stretch.  相似文献   

9.
The 325-residue OmpA protein, which is synthesized as a precursor with a 21-residue signal sequence, is a polypeptide of the outer membrane of Escherichia coli K-12. The signal peptide is able to direct translocation across the plasma membrane of virtually any fragment of this protein. It had, therefore, been concluded that information required for this translocation does not exist within the mature part of the protein. This view has been criticized and it was suggested that our data showed that both the signal sequence and residues within the first 44 amino acid residues of the mature protein contributed to an optimal translocation mechanism. It is shown that, at least as far as is detectable, this is not so. The apparent rates of processing of various pro-OmpA constructs were measured. It was found that these rates did not depend on the presence of amino acid residues 4 through 45 but on the size of the polypeptides; the processing rate decreased with decreasing size. A possible explanation for this phenomenon is offered. While the results do not exclude the possibility that a defined area of the mature protein is involved in optimizing translocation, there is so far no evidence for it.  相似文献   

10.
R Freudl  H Schwarz  M Klose  N R Movva    U Henning 《The EMBO journal》1985,4(13A):3593-3598
Information, in addition to that provided by signal sequences, for translocation across the plasma membrane is thought to be present in exported proteins of Escherichia coli. Such information must also exist for the localization of such proteins. To determine the nature of this information, overlapping inframe deletions have been constructed in the ompA gene which codes for a 325-residue major outer membrane protein. In addition, one deletion, encoding only the NH2-terminal part of the protein up to residue 160, was prepared. The location of each product was determined by immunoelectron microscopy. Proteins missing residues 4-45, 43-84, 46-227, 86-227 or 160-325 of the mature protein were all efficiently translocated across the plasma membrane. The first two proteins were found in the outer membrane, the others in the periplasmic space. It has been proposed that export and sorting signals consist of relatively small amino acid sequences near the NH2 terminus of an outer membrane protein. On the basis of sequence homologies it has also been suggested that such proteins possess a common sorting signal. The locations of the partially deleted proteins described here show that a unique export signal does not exist in the OmpA protein. The proposed common sorting signal spans residues 1-14 of OmpA. Since this region is not essential for routing the protein, the existence of a common sorting signal is doubtful. It is suggested that information both for export (if existent) and localization lies within protein conformation which for the former process should be present repeatedly in the polypeptide.  相似文献   

11.
Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology.  相似文献   

12.
It has been shown previously that fragments of the Escherichia coli major outer membrane protein OmpA lacking CO2H-terminal parts can be incorporated into this membrane in vivo [Bremer et al. (1982) Eur. J. Biochem. 122, 223-231]. The possibility that these fragments can be used, via gene fusions, as vehicles to transport other proteins to the outer membrane has been investigated. To test whether fragments of a certain size were optimal for this purpose a set of plasmids was prepared encoding 160, 193, 228, 274, and 280 NH2-terminal amino acids of the 325-residue OmpA protein. The 160-residue fragment was not assembled into the outer membrane whereas the others were all incorporated with equal efficiencies. Thus, if any kind of OmpA-associated stop transfer is required during export the corresponding signal might be present between residues 160 and 193 but not CO2H-terminal to 193. The ompA gene was fused to the gene (tet) specifying tetracycline resistance and the gene for the major antigen (vp1) of foot-and-mouth disease virus. In the former case a 584-residue chimeric protein is encoded consisting NH2-terminally of 228 OmpA residues followed by 356 CO2H-terminal residues of the 396-residue 'tetracycline resistance protein'. In the other case the same part of OmpA is followed by 250 CO2H-terminal residues of the 213-residue Vp1 plus 107 residues partly derived from another viral protein and from the vector. Full expression of both hybrids proved to be lethal. Lipophilic sequences bordered by basic residues, present in the non-OmpA parts of both hybrids were considered as candidates for the lethal effect. A plasmid was constructed which codes for 280 OmpA residues followed by a 31-residue tail containing the sequence: -Phe-Val-Ile-Met-Val-Ile-Ala-Val-Ser-Cys-Lys-. Expression of this hybrid gene was lethal but by changing the reading frame for the tail to encode another, 30-residue sequence the deleterious effect was abolished. It is possible that the sequence incriminated acts as a stop signal for transfer through the plasma membrane thereby jamming export sites for other proteins and causing lethality. If so, OmpA appears to cross the plasma membrane completely during export.  相似文献   

13.
Pili of Pseudomonas aeruginosa are assembled from monomers of the structural subunit, pilin, after secretion of this protein across the bacterial membrane. These subunits are initally synthesized as precursors (prepilin) with a six-amino-acid leader peptide that is cleaved off during or after membrane traversal, followed by methylation of the amino-terminal phenylalanine residue. This report demonstrates that additional sequences from the N terminus of the mature protein are necessary for membrane translocation. Gene fusions were made between amino-terminal coding sequences of the cloned pilin gene (pilA) and the structural gene for Escherichia coli alkaline phosphatase (phoA) devoid of a signal sequence. Fusions between at least 45 amino acid residues of the mature pilin and alkaline phosphatase resulted in translocation of the fusion proteins across the cytoplasmic membranes of both P. aeruginosa and E. coli strains carrying recombinant plasmids, as measured by alkaline phosphatase activity and Western blotting. Fusion proteins constructed with the first 10 amino acids of prepilin (including the 6-amino-acid leader peptide) were not secreted, although they were detected in the cytoplasm. Therefore, unlike that of the majority of secreted proteins that are synthesized with transient signal sequences, the membrane traversal of pilin across the bacterial membrane requires the transient six-amino-acid leader peptide as well as sequences contained in the N-terminal region of the mature pilin protein.  相似文献   

14.
To determine the minimum requirement in the 76-residue leader sequence of pro-tumor necrosis factor (TNF) for membrane translocation across the endoplasmic reticulum (ER) and for the maturation of pro-TNF, we constructed pro-TNF mutants in which a part of the transmembrane domain of pro-TNF was directly linked to the N-terminus of the mature domain, and evaluated their translocational behavior across the ER-membrane and their secretion from the transfected cells. The in vitro translation/translocation assay involving a canine pancreatic microsomal membrane system including a mutant, Delta-75-47, -32-1, revealed that the N-terminal half of the transmembrane domain of pro-TNF consisting of 14 residues functioned as a cleavable signal sequence; it generated a cleaved form of TNF having a molecular mass similar to that of mature TNF. Analysis of the cleavage site by site-directed mutagenesis indicated that the site was inside the leader sequence of this mutant. When the mutant, Delta-75-47, -32-1, was expressed in COS-1 cells, efficient secretion of a biologically active soluble TNF was observed. Further deletion of the hydrophobic domain from this mutant inhibited the translocation, indicating that some extent of hydrophobicity is indispensable for the membrane translocation of the mature domain of TNF. Thus, the N-terminal half of the transmembrane domain of pro-TNF could function as a cleavable signal sequence when linked to the mature domain of TNF, and secretion of a biologically active secretory form of TNF could be achieved with this 14-residue hydrophobic segment. In intact pro-TNF, however, this 14-residue sequence could not function as a cleavable signal sequence during intracellular processing, indicating that the remainder of the 76-residue leader sequence of pro-TNF inhibits the signal peptide cleavage and thus enables the leader sequence to function as a type II signal-anchor sequence that generates a transmembrane form of TNF.  相似文献   

15.
Escherichia coli expression, processing, and secretion of human interleukin-1 beta (IL-1 beta) fused to the signal peptide of E. coli OmpA or PhoA protein were studied. With fusion to either signal sequence, high-level expression was observed and the products accumulated to about 20% of total cell protein. In the fusion to OmpA leader sequence, more than 50% of the product has the OmpA signal peptide removed precisely. The majority of the processed material is not released by osmotic shock. On the other hand, very little of the material from the fusion to PhoA has the PhoA signal peptide removed. Use of the host with a mutation in prlA or prlF, variation of temperature for cell growth, and alteration of the amino acid residues around the cleavage site do not facilitate processing of the PhoA signal peptide. These results suggest that some component in the PhoA signal peptide, interacting with the Il-1 beta sequence, is interfering with the processing of the signal peptide.  相似文献   

16.
The SecY protein is a membrane-bound factor required for bacterial protein export and embedded in the cytoplasmic membrane by its 10 transmembrane segments. We previously proposed a topology model for this protein by adapting the Manoil-Beckwith TnphoA approach, a genetic method to assign local disposition of a membrane protein from the enzymatic activity of the alkaline phosphatase (PhoA) mature sequence attached to the various regions. SecY-PhoA hybrid proteins with the PhoA domain exported to the periplasmic side of the membrane have been obtained at the five putative periplasmic domains of the SecY sequence. We now extended this method to apply it to follow export of the newly synthesized PhoA domain. Trypsin treatment of detergent-solubilized cell extracts digested the internalized (unfolded) PhoA domain but not those exported and correctly folded. One of the hybrid proteins was cleaved in vivo after export to the periplasm, providing a convenient indication for the export. Results of these analyses indicate that export of the PhoA domain attached to different periplasmic regions of SecY occurs rapidly and requires the normal functioning of the secY gene supplied in trans. Thus, this membrane protein with multiple transmembrane segments contains multiple export signals which can promote rapid and secY-dependent export of the PhoA mature sequence attached to the carboxyl-terminal sides.  相似文献   

17.
Y Akiyama  T Inada  Y Nakamura    K Ito 《Journal of bacteriology》1990,172(6):2888-2893
SecY is an Escherichia coli integral membrane protein required for efficient translocation of other proteins across the cytoplasmic membrane; it is embedded in this membrane by the 10 transmembrane segments. Among several SecY-alkaline phosphatase (PhoA) fusion proteins that we constructed previously, SecY-PhoA fusion 3-3, in which PhoA is fused to the third periplasmic region of SecY just after the fifth transmembrane segment, was found to be subject to rapid proteolytic processing in vivo. Both the SecY and PhoA products of this cleavage have been identified immunologically. In contrast, cleavage of SecY-PhoA 3-3 was barely observed in a lep mutant with a temperature-sensitive leader peptidase. The full-length fusion protein accumulated in this mutant was cleaved in vitro by the purified leader peptidase. A sequence Ala-202-Ile-Ala located near the proposed interface between transmembrane segment 5 and periplasmic domain 3 of SecY was found to be responsible for the recognition and cleavage by the leader peptidase, since a mutated fusion protein with Phe-Ile-Phe at this position was no longer cleaved even in the wild-type cells. These results indicate that SecY contains a potential leader peptidase cleavage site that undergoes cleavage if the PhoA sequence is attached carboxy terminally. Thus, transmembrane segment 5 of SecY can fulfill both of the two important functions of the signal peptide, translocation and cleavage, although the latter function is cryptic in the normal SecY protein.  相似文献   

18.
The distal part of the long tail fibers of the Escherichia coli phage T4 consists of a dimer of protein 37. A fragment of the corresponding gene, encoding 253 amino acids, was inserted into several different sites within the cloned gene for the 325-residue outer membrane protein OmpA. In plasmid pTU T4-5 the fragment was inserted once and in pTU T4-10 tandemly twice between the codons for residues 153 and 154 of the OmpA protein. In pTU T4-22 two fragments were present, in tandem, between the codons for residues 45 and 46 of this protein. In pIN T4-6 one fragment was inserted into the ompA gene immediately following the part encoding the signal sequence. The corresponding mature proteins consist, in this order, of 605, 860, 835, and 279 amino acid residues. All precursor proteins were processed and translocated across the plasma membrane. Hence, not only can the OmpA protein serve as a vehicle for export of a nonsecretory protein, but the signal sequence alone can also mediate export of such a protein. Export of the pro-OmpA protein depends on the SecA protein. Export of the tail fiber fragment expressed from pIN T4-6 remained SecA dependent. Thus, the secA pathway in this case is chosen by the signal peptide. It is proposed that a signal peptide can mediate translocation of nonsecretory proteins as long as they are export-compatible. The inability of a signal sequence to mediate export of some proteins appears to be due to export incompatibility of the protein rather than to the absence of information, within the mature part of the polypeptide, which would be required for translocation.  相似文献   

19.
Most flagellar proteins are exported via a type III export apparatus which, in part, consists of the membrane proteins FlhA, FlhB, FliO, FliP, FliQ, and FliR and is housed within the membrane-supramembrane ring formed by FliF subunits. Salmonella FlhA is a 692-residue integral membrane protein with eight predicted transmembrane spans. Its function is not understood, but it is necessary for flagellar export. We have created mutants in which potentially important sequences were deleted. FlhA lacking the amino-terminal sequence prior to the first transmembrane span failed to complement and was dominant negative, suggesting that the sequence is required for function. Similar effects were seen in a variant lacking a highly conserved domain (FHIPEP) within a putative cytoplasmic loop. Scanning deletion analysis of the cytoplasmic domain (FlhAc) demonstrated that substantially all of FlhAc is required for efficient function. Affinity blotting showed that FlhA interacts with several other export apparatus membrane proteins. The implications of these findings are discussed, and a model of FlhA within the export apparatus is presented.  相似文献   

20.
We studied whether information required for export is present within the mature form of the Escherichia coli 325-residue outer membrane protein OmpA. We had previously analyzed overlapping internal deletions in the ompA gene, and the results allowed us to conclude that if such information exists it must be present repeatedly within the membrane part of the protein encompassing amino acid residues 1 to 177 (R. Freudl, H. Schwarz, M. Klose, N. R. Movva, and U. Henning, EMBO J. 4:3593-3598, 1985). A deletion which removed the codons for amino acid residues 1 to 229 of the OmpA protein was constructed. In this construct the signal sequence was fused to the periplasmic part of the protein. The resulting protein, designated Pro-OmpA delta 1-229, was processed, and the mature 95-residue protein accumulated in the periplasm. Hence, information required for export does not exist within the OmpA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号