首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In epithelial cells, the intracellular pathogen Salmonella typhimurium resides and replicates within a unique cytoplasmic organelle, the Salmonella -containing vacuole (SCV). In vitro studies have shown that the SCV is a dynamic organelle that selectively acquires lysosomal glycoproteins (lgps) without fusing directly with lyosomes. Here, we have investigated early events in SCV biogenesis using immunofluorescence microscopy and epitope-specific flow cytometry. We show that proteins specific to the early endocytic pathway, EEA1 and transferrin receptor (TR), are present on early SCVs. The association of these proteins with SCVs is transient, and both proteins are undetectable at later time points when lgp and vATPase are acquired. Analysis of the fraction of SCVs containing both TR and lamp-1 showed that TR is lost from SCVs as the lgp is acquired, and that these processes occur progressively and not as the result of a single fusion/fission event. These experiments reveal a novel mechanism of SCV biogenesis, involving previously undetected initial interactions with the early endocytic pathway followed by the sequential delivery of lgp. The pathway does not involve interactions with the late endosome/prelysosome and is distinct from traditional phagocytic and endocytic pathways. Our study indicates that intracellular S. typhimurium occupies a unique niche, branching away from the traditional endocytic pathway between the early and late endosomal compartments.  相似文献   

2.
Following invasion of non-phagocytic host cells, Salmonella enterica survives and replicates within a phagosome-like compartment known as the Salmonella-containing vacuole (SCV). It is now well established that SCV biogenesis, like phagosome biogenesis, involves sequential interactions with the endocytic pathway. However, Salmonella is believed to limit these interactions and, in particular, to avoid fusion of terminal lysosomes with the SCV. In this study, we reassessed this process using a high-resolution live-cell imaging approach and found an unanticipated level of interaction between the SCV and the endocytic pathway. Direct interactions, in which late endosomal/lysosomal content was transferred to SCVs, were detected within 30 min of invasion and continued for several hours. Mechanistically, these interactions were very similar to phagosome-lysosome fusion because they were accompanied by rapid acidification of the SCV, could be blocked by chemical perturbation of microtubules or vacuolar acidification and involved the smallGTPase Rab7. In comparison with vacuoles containing internalized Escherichia coli or heat-killed Salmonella, SCVs did show some delay of fusion and acidification, although, this appeared to be independent of either type III secretion system. These results provide compelling evidence that inhibition of SCV-lysosome fusion is not the major determinant in establishment of the Salmonella replicative niche in epithelial cells.  相似文献   

3.
Early endosome antigen 1 (EEA1) is 170-kDa polypeptide required for endosome fusion. EEA1 binds to both phosphtidylinositol 3-phosphate (PtdIns3P) and to Rab5-GTP in vitro, but the functional role of this dual interaction at the endosomal membrane is unclear. Here we have determined the structural features in EEA1 required for binding to these ligands. We have found that the FYVE domain is critical for both PtdIns3P and Rab5 binding. Whereas PtdIns3P binding only required the FYVE domain, Rab5 binding additionally required a 30-amino acid region directly adjacent to the FYVE domain. Microinjection of glutathione S-transferase fusion constructs into Cos cells revealed that the FYVE domain alone is insufficient for localization to cellular membranes; the upstream 30-amino acid region required for Rab5 binding must also be present for endosomal binding. The importance of Rab5 in membrane binding of EEA1 is underscored by the finding that the increased expression of wild-type Rab5 increases endosomal binding of EEA1 and decreases its dependence on PtdIns3P. Thus, the levels of Rab5 are rate-limiting for the recruitment of EEA1 to endosome membranes. PtdIns3P may play a role in modulating the Rab5 EEA1 interaction.  相似文献   

4.
Salmonella enterica are facultative intracellular bacterial pathogens that proliferate within host cells in a membrane-bounded compartment, the Salmonella -containing vacuole (SCV). Intracellular replication of Salmonella is mediated by bacterial effectors translocated on to the cytoplasmic face of the SCV membrane by a type III secretion system. Some of these effectors manipulate the host endocytic pathway, resulting in the formation in epithelial cells of tubules enriched in late endosomal markers, known as Salmonella -induced filaments (SIFs). However, much less is known about possible interference of Salmonella with the secretory pathway. Here, a small-interference RNA screen revealed that secretory carrier membrane proteins (SCAMPs) 2 and 3 contribute to the maintenance of SCVs in the Golgi region of HeLa cells. This is likely to reflect a function of SCAMPs in vacuolar membrane dynamics. Moreover, SCAMP3, which accumulates on the trans -Golgi network in uninfected cells, marked tubules induced by Salmonella effectors that overlapped with SIFs but which also comprised distinct tubules lacking late endosomal proteins. We propose that SCAMP3 tubules reflect a manipulation of specific post-Golgi trafficking that might allow Salmonella to acquire nutrients and membrane, or to control host immune responses.  相似文献   

5.
Salmonella invades mammalian cells by inducing membrane ruffling and macropinocytosis through actin remodelling. Because phosphoinositides are central to actin assembly, we have studied the dynamics of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) in HeLa cells during invasion by Salmonella typhimurium. Here we show that the outermost parts of the ruffles induced by invasion show a modest enrichment in PtdIns(4,5)P(2), but that PtdIns(4,5)P(2) is virtually absent from the invaginating regions. Rapid disappearance of PtdIns(4,5)P(2) requires the expression of the Salmonella phosphatase SigD (also known as SopB). Deletion of SigD markedly delays fission of the invaginating membranes, indicating that elimination of PtdIns(4,5)P(2) may be required for rapid formation of Salmonella-containing vacuoles. Heterologous expression of SigD is sufficient to promote the disappearance of PtdIns(4,5)P(2), to reduce the rigidity of the membrane skeleton, and to induce plasmalemmal invagination and fission. Hydrolysis of PtdIns(4,5)P(2) may be a common and essential feature of membrane fission during several internalization processes including invasion, phagocytosis and possibly endocytosis.  相似文献   

6.
Salmonella colonizes a vacuolar niche in host cells during infection. Maturation of the Salmonella-containing vacuole (SCV) involves the formation of phosphatidylinositol 3-phosphate (PI(3)P) on its outer leaflet. SopB, a bacterial virulence factor with phosphoinositide phosphatase activity, was proposed to generate PI(3)P by dephosphorylating PI(3,4)P2, PI(3,5)P2, and PI(3,4,5)P3. Here, we examine the mechanism of PI(3)P formation during Salmonella infection. SopB is required to form PI(3,4)P2/PI(3,4,5)P3 at invasion ruffles and PI(3)P on nascent SCVs. However, we uncouple these events experimentally and reveal that SopB does not dephosphorylate PI(3,4)P2/PI(3,4,5)P3 to produce PI(3)P. Instead, the phosphatase activity of SopB is required for Rab5 recruitment to the SCV. Vps34, a PI3-kinase that associates with active Rab5, is responsible for PI(3)P formation on SCVs. Therefore, SopB mediates PI(3)P production on the SCV indirectly through recruitment of Rab5 and its effector Vps34. These findings reveal a link between phosphoinositide phosphatase activity and the recruitment of Rab5 to phagosomes.  相似文献   

7.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

8.
Ruetz T  Cornick S  Guttman JA 《PloS one》2011,6(5):e19940
Various enteric bacterial pathogens target the host cell cytoskeletal machinery as a crucial event in their pathogenesis. Despite thorough studies detailing strategies microbes use to exploit these components of the host cell, the role of the spectrin-based cytoskeleton has been largely overlooked. Here we show that the spectrin cytoskeleton is a host system that is hijacked by adherent (Entropathogenic Escherichia coli [EPEC]), invasive triggering (Salmonella enterica serovar Typhimurium [S. Typhimurium]) and invasive zippering (Listeria monocytogenes) bacteria. We demonstrate that spectrin cytoskeletal proteins are recruited to EPEC pedestals, S. Typhimurium membrane ruffles and Salmonella containing vacuoles (SCVs), as well as sites of invasion and comet tail initiation by L. monocytogenes. Spectrin was often seen co-localizing with actin filaments at the cell periphery, however a disconnect between the actin and spectrin cytoskeletons was also observed. During infections with S. Typhimurium ΔsipA, actin-rich membrane ruffles at characteristic sites of bacterial invasion often occurred in the absence of spectrin cytoskeletal proteins. Additionally, early in the formation of L. monocytogenes comet tails, spectrin cytoskeletal elements were recruited to the surface of the internalized bacteria independent of actin filaments. Further studies revealed the presence of the spectrin cytoskeleton during SCV and Listeria comet tail formation, highlighting novel cytoplasmic roles for the spectrin cytoskeleton. SiRNA targeted against spectrin and the spectrin-associated proteins severely diminished EPEC pedestal formation as well as S. Typhimurium and L. monocytogenes invasion. Ultimately, these findings identify the spectrin cytoskeleton as a ubiquitous target of enteric bacterial pathogens and indicate that this cytoskeletal system is critical for these infections to progress.  相似文献   

9.
The intracellular pathogen, Salmonella enterica, translocates type III effectors across its vacuolar membrane into host cells. Herein we describe a new Salmonella effector, PipB2, which has sequence similarity to another type III effector, PipB. In phagocytic cells, PipB2 localizes to the Salmonella-containing vacuole (SCV) and tubular extensions from the SCV, Salmonella-induced filaments (Sifs). We used the specific targeting of PipB2 in macrophages to characterize Sifs in phagocytic cells for the first time. In epithelial cells, PipB2 has a unique localization pattern, localizing to SCVs and Sifs and additionally to vesicles at the periphery of infected cells. We further show that the N-terminal 225-amino-acid residues of PipB2 are sufficient for type III translocation and association with SCVs and Sifs, but not peripheral vesicles. Subcellular fractionation demonstrated that both PipB and PipB2 associate with host cell membranes and resist extraction by high salt, high pH and to a significant extent, non-ionic detergent. Furthermore, PipB and PipB2 are enriched in detergent-resistant microdomains (DRMs), also known as lipid rafts, present on membranes of SCVs and Sifs. The enrichment of Salmonella effectors in DRMs on these intracellular membranes probably permits specific interactions with host cell molecules that are concentrated in these signalling platforms.  相似文献   

10.
Phosphatidylinositol 3‐phosphate (PtdIns3P) orchestrates endosomal cargo transport, fusion and motility by recruiting FYVE or PX domain‐containing effector proteins to endosomal membranes. In an attempt to discover novel PtdIns3P effectors involved in the termination of growth factor receptor signalling, we performed an siRNA screen for epidermal growth factor (EGF) degradation, targeting FYVE and PX domain proteins in the human proteome. This screen identified several potential regulators of EGF degradation, including HRS (used as positive control), PX kinase, MTMR4 and Phafin2/PLEKHF2. As Phafin2 has not previously been shown to be required for EGF receptor (EGFR) degradation, we performed further functional studies on this protein. Loss of Phafin2 was found to decrease early endosome size, whereas overexpression of Phafin2 resulted in enlarged endosomes. Moreover, both the EGFR and the fluid‐phase marker dextran were retained in abnormally small endosomes in Phafin2‐depleted cells. In yeast two‐hybrid analysis we identified Phafin2 as a novel interactor of the endosomal‐tethering protein EEA1, and Phafin2 colocalized strongly with EEA1 in microdomains of the endosome membrane. Our results suggest that Phafin2 controls receptor trafficking and fluid‐phase transport through early endosomes by facilitating endosome fusion in concert with EEA1.  相似文献   

11.
Salmonella enterica serovar Typhimurium is an intracellular pathogen that grows within a modified endomembrane compartment, the Salmonella‐containing vacuole (SCV). Maturation of nascent SCVs involves the recruitment of early endosome markers and the remodelling of phosphoinositides at the membrane of the vacuole, in particular the production of phosphatidylinositol 3‐phosphate [PI(3)P]. Sorting nexins (SNXs) are a family of proteins characterized by the presence of a phox homology (PX) domain that binds to phosphoinositides and are involved in intracellular trafficking in eukaryotic cells. We therefore studied whether sorting nexins, particularly sorting nexin 3 (SNX3), play a role in Salmonella infection. We found that SNX3 transiently localized to SCVs at early times post invasion (10 min) and presented a striking tubulation phenotype in the vicinity of SCVs at later times (30–60 min). The bacterial effector SopB, which is known to promote PI(3)P production on SCVs, was required for the formation of SNX3 tubules. In addition, RAB5 was also required for the formation of SNX3 tubules. Depletion of SNX3 by siRNA impaired RAB7 and LAMP1 recruitment to the SCV. Moreover, the formation of Salmonella‐induced filaments (Sifs) was altered by SNX3 knock‐down. Therefore, SNX3 plays a significant role in regulating the maturation of SCVs.  相似文献   

12.
Intracellular replication of Salmonella enterica occurs in membrane-bound compartments, called Salmonella-containing vacuoles (SCVs). Following invasion of epithelial cells, most SCVs migrate to a perinuclear region and replicate in close association with the Golgi network. The association of SCVs with the Golgi is dependent on the Salmonella-pathogenicity island-2 (SPI-2) type III secretion system (T3SS) effectors SseG, SseF and SifA. However, little is known about the dynamics of SCV movement. Here, we show that in epithelial cells, 2 h were required for migration of the majority of SCVs to within 5 microm from the microtubule organizing centre (MTOC), which is located in the same subcellular region as the Golgi network. This initial SCV migration was saltatory, bidirectional and microtubule-dependent. An intact Golgi, SseG and SPI-2 T3SS were dispensable for SCV migration to the MTOC, but were essential for maintenance of SCVs in that region. Live-cell imaging between 4 and 8 h post invasion revealed that the majority of wild-type SCVs displaced less than 2 microm in 20 min from their initial starting positions. In contrast, between 6 and 8 h post invasion the majority of vacuoles containing sseG, sseF or ssaV mutant bacteria displaced more than 2 microm in 20 min from their initial starting positions, with some undergoing large and dramatic movements. Further analysis of the movement of SCVs revealed that large displacements were a result of increased SCV speed rather than a change in their directionality, and that SseG influences SCV motility by restricting vacuole speed within the MTOC/Golgi region. SseG might function by tethering SCVs to Golgi-associated molecules, or by controlling microtubule motors, for example by inhibiting kinesin recruitment or promoting dynein recruitment.  相似文献   

13.
Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and subvert microtubule-dependent motors to migrate to the perinuclear region. We demonstrate that SipA delivery continues after Salmonella internalization, with dosage being restricted by host-mediated degradation. SipA is exposed on the cytoplasmic face of the SCV, from where it stimulates bacterial replication in both nonphagocytic cells and macrophages. Although SipA is sufficient to target and redistribute late endosomes, during infection it cooperates with the SPI2 effector SifA to modulate SCV morphology and ensure perinuclear positioning. Our findings define an unexpected additional function for SipA postentry and reveal precise intracellular communication between effectors deployed by distinct T3SSs underlying SCV biogenesis.  相似文献   

14.
Salmonella invades epithelial cells and survives within a membrane‐bound compartment, the Salmonella‐containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time‐points. Vacuole interactions with endoplasmic reticulum‐derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper‐replication within the host cytosol. On the other hand, SCV interactions with VAMP7‐positive lysosome‐like vesicles promote Salmonella‐induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.  相似文献   

15.
Phagocytic cells such as neutrophils and macrophages engulf and destroy invading microorganisms. After internalization, material captured within the phagosomal membrane is destroyed by a complex process of coordinated delivery of digestive enzymes and reactive oxygen species. Several endosomal, lysosomal, and oxidase components expected to participate in these events have recently been shown to bind PtdIns3P, suggesting that this lipid may play a role in this process. We used live, digital fluorescence imaging of RAW 264.7 cells stably expressing either a PtdIns3P binding GFP-PX domain or a GFP-FYVE domain to visualize changes in the levels and subcellular localization of PtdIns3P during phagocytic uptake of IgG-opsonized zymosan particles. Very similar results were obtained using both PtdIns3P probes. The basal distribution of each PtdIns3P probe was partially cytosolic and partially localized to EEA-1-positive endosomal structures. Within about 2-3 min of zymosan attachment and concomitant with the closure of the phagosomal membrane, GFP-positive vesicles moved toward and attached to a localized area of the phagosome. A dramatic, transient accumulation of GFP probe around the entire phagosome rapidly ensued, accompanied by a transient drop in cytosolic GFP fluorescence. The magnitude and timing of this rise in PtdIns3P clearly suggest that it is an ideal candidate for controlling the early stages of phagosomal maturation.  相似文献   

16.
Salmonella typhimurium invades mammalian cells and replicates within a vacuole that protects it from the host's microbicidal weapons. The Salmonella-containing vacuole (SCV) undergoes a remodelling akin to that of the host cell's endocytic pathway, but SCV progression is arrested prior to fusion with lysosomes. We studied the role of phosphatidylinositol 3-kinase (PI3-K) in SCV maturation within HeLa cells. Phosphatidylinositol 3-phosphate (PI3P), monitored in situ using fluorescent conjugates of FYVE or PX domains, was found to accumulate transiently on the SCV. Wortmannin prevented PI3P accumulation and the recruitment of EEA1 but did not affect the association of Rab5 with the SCV. Importantly, inhibition of PI3-K also impaired fusion of the SCV with vesicles containing LAMP-1. Rab7, which is thought to be required for association of LAMP-1 with the SCV, still associated with SCV in wortmannin-treated cells. We have therefore concluded that a 3-phosphoinositide-dependent step exists following recruitment of Rab7 to the SCV. The data also imply that 3-phosphoinositide-dependent effectors of Rab5 are not an absolute requirement for recruitment of Rab7. Despite failure to acquire LAMP-1, the SCV persists and allows effective replication of Salmonella within wortmannin-treated host cells. These findings imply that PI3-K is involved in the development of the SCV but is not essential for intracellular survival and proliferation of Salmonella.  相似文献   

17.
Salcedo SP  Holden DW 《The EMBO journal》2003,22(19):5003-5014
Intracellular replication of the bacterial pathogen Salmonella enterica occurs in membrane-bound compartments called Salmonella-containing vacuoles (SCVs). Maturation of the SCV has been shown to occur by selective interactions with the endocytic pathway. We show here that after invasion of epithelial cells and migration to a perinuclear location, the majority of SCVs become surrounded by membranes of the Golgi network. This process is dependent on the Salmonella pathogenicity island 2 type III secretion system effector SseG. In infected cells, SseG was associated with the SCV and peripheral punctate structures. Only bacterial cells closely associated with the Golgi network were able to multiply; furthermore, mutation of sseG or disruption of the Golgi network inhibited intracellular bacterial growth. When expressed in epithelial cells, SseG co-localized extensively with markers of the trans-Golgi network. We identify a Golgi-targeting domain within SseG, and other regions of the protein that are required for localization of bacteria to the Golgi network. Therefore, replication of Salmonella in epithelial cells is dependent on simultaneous and selective interactions with both endocytic and secretory pathways.  相似文献   

18.
Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3'(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal maturation and (b) critical molecular targets affected by M. tuberculosis. This study also identifies mycobacterial phosphoinositides as products with specialized toxic properties, interfering with discrete trafficking stages in phagosomal maturation.  相似文献   

19.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known to damage eukaryotic cell membranes and S. Typhimurium has been suggested to damage the SCV using its Salmonella pathogenicity island (SPI)-1 encoded TTSS. Here we show that this damage gives rise to an intracellular bacterial population targeted by the autophagy system during in vitro infection. Approximately 20% of intracellular S. Typhimurium colocalized with the autophagy marker GFP-LC3 at 1 h postinfection. Autophagy of S. Typhimurium was dependent upon the SPI-1 TTSS and bacterial protein synthesis. Bacteria targeted by the autophagy system were often associated with ubiquitinated proteins, indicating their exposure to the cytosol. Surprisingly, these bacteria also colocalized with SCV markers. Autophagy-deficient (atg5-/-) cells were more permissive for intracellular growth by S. Typhimurium than normal cells, allowing increased bacterial growth in the cytosol. We propose a model in which the host autophagy system targets bacteria in SCVs damaged by the SPI-1 TTSS. This serves to retain intracellular S. Typhimurium within vacuoles early after infection to protect the cytosol from bacterial colonization. Our findings support a role for autophagy in innate immunity and demonstrate that Salmonella infection is a powerful model to study the autophagy process.  相似文献   

20.
After invasion of epithelial cells, Salmonella enterica Typhimurium resides within membrane-bound vacuoles where it survives and replicates. Like endocytic vesicles, the Salmonella-containing vacuoles (SCVs) undergo a maturation process that involves sequential acquisition of Rab5 and Rab7 and displacement toward the microtubule-organizing center. However, SCVs fail to merge with lysosomes and instead develop subsequently into a filamentous network that extends toward the cell periphery. We found that the initial centripetal displacement of the SCV is due to recruitment by Rab7 of Rab7-interacting lysosomal protein (RILP), an effector protein that can simultaneously associate with the dynein motor complex. Unlike the early SCVs, the Salmonella-induced filaments (Sifs) formed later are devoid of RILP and dynein, despite the presence of active Rab7 on their membranes. Kinesin seems to be involved in the elongation of Sifs. SifA, a secreted effector of Salmonella, was found to be at least partly responsible for uncoupling Rab7 from RILP in Sifs and in vitro experiments suggest that SifA may exert this effect by interacting with Rab7. We propose that, by disengaging RILP from Rab7, SifA enables the centrifugal extension of tubules from the Salmonella-containing vacuoles, thereby providing additional protected space for bacterial replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号