首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shen X  Falzon M 《Regulatory peptides》2005,125(1-3):17-27
Parathyroid hormone-related protein (PTHrP) has been localized in human colon cancer tissue and cell lines. Tumor cell adhesion to extracellular matrix (ECM) proteins plays a major role in the invasion and metastasis of tumor cells, and is mediated via integrin subunits. The LoVo human colon cancer cell line was used as a model system to study the effects of PTHrP on cell proliferation and adhesion to ECM proteins found in normal liver. Clones of LoVo cells engineered to overexpress PTHrP by stable transfection with a PTHrP cDNA showed enhanced cell proliferation vs. control (empty vector-transfected) cells. PTHrP-overexpressing cells also showed significantly higher adhesion to collagen type I, fibronectin, and laminin, and enhanced expression of the [symbol: see text] integrin subunits. These results indicate that PTHrP may play a role in colon cancer invasion and metastasis by increasing cell proliferation and adhesion to the ECM via upregulation of proinvasive integrin expression.  相似文献   

2.
The adhesion of HT29 human colon adenocarcinoma cells to different extracellular matrix components was studied. While treatment of the cells with sialidase had no detectable effect on binding to laminin and fibronectin, attachment to collagen IV was decreased. However, additional removal of beta-(1-4)-bound galactose led to significantly reduced binding to all of the substrates, including fibronectin and laminin. Tunicamycin treatment, monitored by lectin-induced aggregation, drastically diminished cell adhesion to laminin and fibronectin, whereas cell binding to collagen IV was not affected. Arg-Gly-Asp (RGD)-related peptides were used to study the adhesion to collagen IV. The results show that a serine-containing RGD-related peptide GRGDSP has virtually no effect on colon carcinoma cell adhesion to type IV collagen. In contrast, when serine was substituted for threonine (GRGDTP) adhesion to collagen IV was strongly inhibited. After incubation of sialidase-treated cells with the threonine-containing peptide adhesion was almost totally blocked. These results demonstrate the existence of both RGD-dependent and carbohydrate-based mechanisms for metastatic human HT29 cell binding to collagen IV.  相似文献   

3.
Using monoclonal antibody technology and affinity chromatography we have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080. Two classes of monoclonal antibodies prepared against HT-1080 cells inhibited adhesion to extracellular matrix components. Class I antibodies inhibited cell adhesion to collagen, fibronectin, and laminin. These antibodies immunoprecipitated two noncovalently linked proteins (subunits) with molecular masses of 147 and 125 kD, termed alpha and beta, respectively. Class II antibodies inhibited cell adhesion to native collagen only and not fibronectin or laminin. Class II antibodies immunoprecipitated a single cell surface protein containing two noncovalently linked subunits with molecular masses of 145 and 125 kD, termed alpha and beta, respectively. The two classes of antibodies did not cross-react with the same cell surface protein and recognized epitopes present on the alpha subunits. Pulse-chase labeling studies with [35S]methionine indicated that neither class I nor II antigen was a metabolic precursor of the other. Comparison of the alpha and beta subunits of the class I and II antigens by peptide mapping indicated that the beta subunits were identical while the alpha subunits were distinct. In affinity chromatography experiments HT-1080 cells were extracted with Triton X-100 or octylglucoside detergents and chromatographed on insoluble fibronectin or native type I or VI collagens. A single membrane protein with the biochemical characteristics of the class I antigen was isolated on fibronectin-Sepharose and could be immunoprecipitated with the class I monoclonal antibody. The class I antigen also specifically bound to type I and VI collagens, consistent with the observation that the class I antibodies inhibit cell adhesion to types VI and I collagen and fibronectin. The class II antigen, however, did not bind to collagen (or fibronectin) even though class II monoclonal antibodies completely inhibited adhesion of HT-1080 cells to types I and III-VI collagen. The class I beta and II beta subunits were structurally related to the beta subunit of the fibronectin receptor described by others. However, none of these receptors shared the same alpha subunits. Additional membrane glycoprotein(s) with molecular mass ranges of 80-90 and 35-45 kD, termed the class III and IV receptors, respectively, bound to types I and VI collagen but not to fibronectin. Monoclonal antibodies prepared against the class III receptor had no consistent effect on cell attachment or spreading, suggesting that it is not directly involved in adhesion to collagen-coated substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The localization of the extracellular matrix recognition molecule J1/tenascin was investigated in the crypt-villus unit of the adult mouse ileum by immunoelectron microscopic techniques. In the villus region, J1/tenascin was detected strongly in the extracellular matrix (ECM) between fibroblasts of the lamina propria. It was generally absent in the ECM at the interface between subepithelial fibroblasts and intestinal epithelium, except for some restricted areas along the epithelial basal lamina of villi, but not of crypts. These restricted areas corresponded approximately to the basal part of one epithelial cell. In J1/tenascin-positive areas, epithelial cells contacted the basal lamina with numerous microvillus-like processes, whereas in J1/tenascin-negative areas the basal surface membranes of epithelial cells contacted their basal lamina in a smooth and continuous apposition. In order to characterize the functional role of J1/tenascin in the interaction between epithelial cells and ECM, the intestinal epithelial cell line HT-29 was tested for its ability to adhere to different ECM components. Cells adhered to substratum-immobilized fibronectin, laminin and collagen types I to IV, but not to J1/tenascin. When laminin or collagen types I to IV were mixed with J1/tenascin, cell adhesion was as effective as without J1/tenascin. However, adhesion was completely abolished when cells were offered a mixture of fibronectin and J1/tenascin as substratum. The ability of J1/tenascin to reduce the adhesion of intestinal epithelial cells to their fibronectin-containing basal lamina suggests that J1/tenascin may be involved in the process of physiological cell shedding from the villus.  相似文献   

5.
The tumor-associated antigen 90K (TAA90K)/Mac-2-binding protein implicated in cancer progression and metastasis is modified by beta1-6 branched N-linked oligosaccharides in colon cancer cells, glycans shown to contribute to cancer metastasis. To elucidate the role of TAA90K in colon cancer, we examined its expression and function in human colon tumors and colon carcinoma cell lines. Immunohistochemical analyses of colon tumors revealed elevated expression of TAA90K in all samples analyzed compared to normal colon. To examine the function of TAA90K in colon cancer, we carried out protein and cell binding assays using TAA90K-His purified from HT-29 cells colon carcinoma cells infected with recombinant vaccinia virus expressing TAA90K containing a C-terminal poly-histidine tag. TAA90K-His bound to fibronectin, collagen IV, laminins-1, -5, and -10 and galectin-3 (Mac-2) but poorly to collagen I and galectin-1. As expected, binding of TAA90K to galectin-3 was dependent on carbohydrate since it was inhibitable by lactose and asiolofetuin, and a TAA90K-His glycoform purified from HT-29 cells treated with the glycosylation inhibitor 1-deoxymannojirimycin bound poorly to galectin-3. Unlike TAA90K isolated from other cell types, TAA90K-His isolated from colon cancer cells failed to mediate adhesion of colon cancer and normal cell lines, possibly due to cell-type specific glycosylation of TAA90K-His and/or its putative cellular receptor. However, at low concentrations, TAA90K-His enhanced galectin-3-mediated HT-29 cell adhesion while at high concentrations, it inhibited cell adhesion. Thus, a possible mechanism by which TAA90K may contribute to colon cancer progression is by modulating tumor cell adhesion to extracellular proteins, including galectin-3.  相似文献   

6.
Treatment of chick myoblasts with the glucosidase inhibitors bromoconduritol (BCD) or N-methyl-1-deoxynojirimycin (MDJN), but not the mannosidase I inhibitor 1-deoxymannojirimycin (ManDJN), decreased their rate of adhesion to fibronectin and laminin and increased their rate of adhesion to collagen types I and IV. The adhesion of chick myoblasts to fibronectin, collagen type IV, and laminin was predominantly mediated by beta 1-type integrin(s) as judged by inhibition of adhesion with the beta 1-specific monoclonal antibody JG22. Collagen binding in inhibitor-treated cells remained JG22-sensitive suggesting the inhibitors promote increased activity of a beta 1-type collagen-selective integrin. The effects of BCD, MDJN, and ManDJN on myoblast beta 1-integrin detectable at the myoblast cell surface with JG22 antibody correlated well with their effects on adhesion to fibronectin and laminin, and paralleled the previously reported effects of these agents on myogenesis. Interaction of integrin with the extracellular matrix appears to be required for myoblast terminal differentiation. We found that Mn2+ ions increased the adhesion of myoblasts to extracellular matrix proteins and antagonized the effect of BCD and MDJN on myoblast differentiation, supporting a role for cell-matrix interactions in myogenesis. Inhibition of myogenesis by BCD or MDJN was not reversed by growth under low serum conditions, suggesting these agents do not act by maintaining myoblast in a proliferative state.  相似文献   

7.
We have examined the role of growth factors and extracellular matrix in the proliferation and cell adhesion of a murine mammary carcinoma, SP1, and a stable highly metastatic variant, SP1-3M. On fibronectin, both cell types proliferated strongly in response to basic fibroblast growth factor (bFGF) and platelet-derived growth factor BB (PDGF-BB) after culture for 24 h and 72 h. In contrast, on collagen type I, SP1 cells proliferated only weakly to PDGF-BB at either time, and SP1-3M cells showed a response to PDGF-BB only at 72 h. The proliferative response to bFGF was also consistently lower when the cells were cultured on collagen than on fibronectin. No significant proliferative responses were detected to epithelial growth factor (EGF), transforming growth factor-beta (TGF-beta), or estrogen on any substratum. The lack of responsiveness to PDGF-BB of cells cultured on collagen type I was not due to differences in numbers or affinity of PDGF receptors. We therefore examined the adhesion and spreading properties of SP1 and SP1-3M cells. Without exogenous growth factors, both cell lines adhered to fibronectin and laminin. SP1-3M cells did not bind to collagen type I, whereas SP1 cells did. Attachment to all three substrata was inhibited by anti-beta 1 integrin IgG, suggesting that the primary adhesion to these substrata is mediated by beta 1 integrins. SP1 and SP1-3M cells showed similar integrin patterns following immunoprecipitation by anti-beta 1 integrin IgG. bFGF stimulated increased adhesion and spreading of both SP1 and SP1-3M cells to collagen type I within 24 h, whereas PDGF-BB was less capable of this effect. Our results suggest that the proliferative response of SP1 and SP1-3M cells to PDGF-BB and bFGF is dependent on the extracellular matrix environment, and imply that modification of extracellular matrix and/or surface integrin receptors may regulate responsiveness to these growth factors in the SP1 tumor model.  相似文献   

8.
We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.  相似文献   

9.
Previous studies have established that in response to wounding, the expression of amyloid precursor-like protein 2 (APLP2) in the basal cells of migrating corneal epithelium is greatly up-regulated. To further our understanding of the functional significance of APLP2 in wound healing, we have measured the migratory response of transfected Chinese hamster ovary (CHO) cells expressing APLP2 isoforms to a variety of extracellular matrix components including laminin, collagen types I, IV, and VII, fibronectin, and heparan sulfate proteoglycans (HSPGs). CHO cells overexpressing either of two APLP2 variants, differing in chondroitin sulfate (CS) attachment, exhibit a marked increase in chemotaxis toward type IV collagen and fibronectin but not to laminin, collagen types I and VII, and HSPGs. Cells overexpressing APLP2-751 (CS-modified) exhibited a greater migratory response to fibronectin and type IV collagen than their non-CS-attached counterparts (APLP2-763), suggesting that CS modification enhanced APLP2 effects on cell migration. Moreover, in the presence of chondroitin sulfate, transfectants overexpressing APLP2-751 failed to exhibit this enhanced migration toward fibronectin. The APLP2-ECM interactions were also explored by solid phase adhesion assays. While overexpression of APLP2 isoforms moderately enhanced CHO adhesion to laminin, collagen types I and VII, and HSPGs lines, especially those overexpressing APLP2-751, exhibited greatly increased adhesion to type IV collagen and fibronectin. These observations suggest that APLP2 contributes to re-epithelialization during wound healing by supporting epithelial cell adhesion to fibronectin and collagen IV, thus influencing their capacity to migrate over the wound bed. Furthermore, APLP2 interactions with fibronectin and collagen IV appear to be potentiated by the addition of a CS chain to the core proteins.  相似文献   

10.
Integrin-initiated extracellular signal-regulated kinase (ERK) activation by matrix adhesion may require focal adhesion kinase (FAK) or be FAK-independent via caveolin and Shc. This remains controversial for fibroblast and endothelial cell adhesion to fibronectin and is less understood for other matrix proteins and cells. We investigated Caco-2 intestinal epithelial cell ERK activation by collagen I and IV, laminin, and fibronectin. Collagens or laminin, but not fibronectin, stimulated tyrosine phosphorylation of FAK, paxillin, and p130(cas) and activated ERK1/2. Shc, tyrosine-phosphorylated by matrix adhesion in many cells, was not phosphorylated in Caco-2 cells in response to any matrix. Caveolin expression did not affect Caco-2 Shc phosphorylation in response to fibronectin. FAK, ERK, and p130(cas) tyrosine phosphorylation were activated after 10-min adhesion to collagen IV. FAK activity increased for 45 min after collagen IV adhesion and persisted for 2 h, while p130(cas) phosphorylation increased only slightly after 10 min. ERK activity peaked at 10 min, declined after 30 min, and returned to base line after 1 h. Transfection with FAK-related nonkinase, but not substrate domain deleted p130(cas), strongly inhibited ERK2 activation in response to collagen IV, indicating Caco-2 ERK activation is at least partly regulated by FAK.  相似文献   

11.
To define the role of the extracellular matrix (ECM) in hepatogenesis, we examined the temporal and spatial deposition of fibronectin, laminin and collagen types I and IV in 12.5-21.5 day fetal and 1, 7 and 14 day postnatal rat livers. In early fetal liver, discontinuous deposits of the four ECM components studied were present in the perisinusoidal space, with laminin being the most prevalent. All basement membrane zones contained collagen type IV and laminin, including those of the capsule (mesothelial), portal vein radicles and bile ductules. Fibronectin had a distribution similar to that of collagen type IV early in gestation. However, at later gestational dates, fibronectin distribution in the portal triads approached that of collagen type I, being present in the interstitial connective tissues; whereas, collagen type IV and laminin were restricted to vascular and biliary basement membrane zones in those regions. The cytoplasm of some sinusoidal lining cells and hepatocytes reacted with antibodies to extracellular matrix components. By electron microscopy the immunoreactive material was localized in the endoplasmic reticulum, indicating the ability of these cells to synthesize these ECM proteins. Biliary ductular cells had prominent intracytoplasmic staining for laminin and collagen type IV from day 19.5 gestation until 7 days of postnatal life, but lacked demonstrable fibronectin or collagen type I. These results demonstrate that by 12.5 days of gestation the rat liver anlage has deposited a complex extracellular matrix in the perisinusoidal space. The prevalence of laminin in the developing hepatic lobules suggests a possible role for this glycoprotein in hepatic morphogenesis. In view of the intimate association of the hepatic lobular extracellular matrix with the developing vasculature, we hypothesize that laminin provides a scaffold of the developing liver, but once the ontogenesis is complete, intrahepatic perisinusoidal laminin expression is suppressed.  相似文献   

12.
The effect of sphingosine (SPH) on the adhesive properties of Lewis lung carcinoma (3LL) cells was investigated using plastic precoated with the extracellular matrix proteins, laminin, fibronectin, or type IV collagen. Treatment of 3LL cells with SPH (0.5-10 microM) resulted in a dose-dependent decrease in the ability to bind to laminin and type IV collagen but had little or no effect on attachment to fibronectin. Phorbol 12-myristate 13-acetate (PMA) selectively enhanced attachment of 3LL cells to laminin and collagen. The inhibitory effect of SPH on attachment to both proteins was competitively antagonized by PMA. These results suggest that SPH acts as a negative effector for cell attachment to laminin and collagen, and that the cell attachment process to both proteins might be regulated in part by protein kinase C.  相似文献   

13.
In this study, we used clone A, a human colon carcinoma cell line, to characterize those integrins that mediate colon carcinoma adhesion to laminin. Monoclonal antibodies specific for the human beta 1 subunit inhibited clone A adhesion to laminin. They also precipitated a complex of surface proteins that exhibited an electrophoretic behavior characteristic of alpha 2 beta 1 and alpha 3 beta 1. A monoclonal antibody specific for alpha 2 (PIH5) blocked clone A adhesion to laminin, as well as to collagen I. An alpha 3-specific antibody (P1B5) had no effect on clone A adhesion to laminin, even though it can block the adhesion of other cell types to laminin. Thus, the alpha 2 beta 1 integrin can function as both a laminin and collagen I receptor on clone A cells. Although these cells express alpha 3 beta 1, an established laminin receptor, they do not appear to use it to mediate laminin adhesion. In addition, the monoclonal antibody GoH3, which recognizes the alpha 6 integrin subunit, also inhibited carcinoma adhesion to laminin but not to fibronectin or collagen I. This antibody precipitated the alpha 6 subunit in association with the beta 4 subunit. There was no evidence of alpha 6 beta 1 association on these cells. In summary, the results obtained in this study indicate that multiple integrin alpha subunits, in association with two distinct beta subunits, are involved in colon carcinoma adhesion to laminin. Based on the behavior of alpha 3 beta 1 and alpha 2 beta 1, the results also suggest that cells can regulate the ability of a specific integrin to mediate adhesion.  相似文献   

14.
Shen X  Falzon M 《Regulatory peptides》2003,113(1-3):17-29
Parathyroid hormone-related protein (PTHrP) is expressed by human prostatic tissue and prostate cancer cell lines, and enhances prostate tumor cell growth both in vivo and in vitro. PTHrP expression also plays a role in the development of bone metastasis, which is a frequent complication in patients with prostate carcinoma. Tumor cell adhesion to extracellular matrix (ECM) components is mediated via integrin subunits, and plays a major role in the invasion and metastasis of tumor cells. We previously showed that PTHrP overexpression increases adhesion of the human prostate cancer cell line PC-3 to the ECM molecules collagen type I, fibronectin, and laminin. Increased adhesion is accompanied by upregulation in the expression of alpha1, alpha5, alpha6, and beta4 integrin subunits. We used the same cell line to study the mechanism via which PTHrP upregulates integrin expression. Clonal PC-3 cells were established overexpressing wild-type PTHrP or PTHrP mutated in the nuclear localization sequence (NLS). Mutation of the NLS negated the effects of PTHrP on alpha1, alpha5, alpha6, and beta4 integrin expression, indicating that these effects are mediated via an intracrine pathway requiring nuclear localization. Expression of the alpha2, alpha3, alphav, and beta1 integrin subunits were comparable in wild-type and NLS-mutated PTHrP transfectants. These findings indicate that PTHrP may play a role in prostate tumor invasion and metastasis by upregulating the expression of specific integrin subunits via an intracrine pathway.  相似文献   

15.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

16.
The effects of cell differentiation on cell adhesion to laminin were studied using the human colon tumor cell line, HT29. HT29 cells were induced to differentiate either by glucose deprivation (HT29glc- vs HT29glc+) or by 2 mM butyrate (HT29glc-+B+). Adhesion was assayed after incubating cell suspensions in microtiter wells previously coated with laminin or other substrates. HT29glc+ cells adhered preferentially to laminin over BSA, fibronectin, and ovalbumin. The adhesion to laminin was greater than 50% of maximum within 15 min. HT29glc- cell adhesion to laminin was consistently lower than that for HT29glc+ or HT29glc+B+ cells. alpha-Lactalbumin (ALA), a modifier of galactosyltransferase (GT) substrate specificity, caused a significant reduction (greater than 50%) in HT29glc+ cell adhesion to laminin when ALA was added to the adhesion incubation mixture. Addition of glucose+ALA to the suspension restored adhesion to laminin. Ovalbumin, a GT substrate, increased adhesion of HT29glc+ and HT29glc- cells to laminin, but lactose, a GT product, did not. The data show that undifferentiated HT29 cells adhere preferentially to laminin over fibronectin and collagen IV and that differentiation of HT29 cells reduces adhesion to laminin. In addition, the data imply that cell adhesion to laminin may be mediated by factors that also modify galactosyltransferase activity.  相似文献   

17.
Integrin subunits present on human bladder cells displayed heterogeneous functional specificity in adhesion to extracellular matrix proteins (ECM). The non-malignant cell line (HCV29) showed significantly higher adhesion efficiency to collagen IV, laminin (LN) and fibronectin (FN) than cancer (T24, Hu456) and v-raf transfected (BC3726) cell lines. Specific antibodies to the alpha(2), alpha(5) and beta(1) integrin subunits inhibited adhesion of the non-malignant cells, indicating these integrin participation in the adhesion to ECM proteins. In contrast, adhesion of cancer cells was not inhibited by specific antibodies to the beta(1) integrin subunit. Antibodies to alpha(3) integrin increased adhesion of cancer cells to collagen, LN and FN, but also of the HCV29 line with collagen. It seems that alpha(3) subunit plays a major role in modulation of other integrin receptors especially in cancer cells. Differences in adhesion to ECM proteins between the non-malignant and cancer cell lines in response to Gal and Fuc were not evident, except for the v-raf transfected cell line which showed a distinct about 6-fold increased adhesion to LN on addition of both saccharides. N-Acetylneuraminic acid inhibited adhesion of all cell lines to LN and FN irrespective of their malignancy.  相似文献   

18.
This study describes the adhesion of human osteoblasts, culturedin vitro, to proteins of the extracellular matrix, the biosynthesis of integrins, their topography and organization in focal contacts. The adhesion of osteoblasts to laminin, type I collagen, vitronectin and fibronectin was 77–100%, in 2h and at 55nm substrata concentration, and it was accompained by spreading of the cells. Adhesion to fibronectin (FN), laminin (LN) and type I collagen (COL) was inhibited by antibodies to the β1 integrin and antibodies to the α5 chain affected adhesion only to fibronectin. Using a panel of polyclonal antibodies against α2, α3, α5, αv, β1 andβ3 integrins we detected synthesis of α3β1, α5β1, αvβ3, and an αvβ1-like dimer by immunoprecipitation of metabolically labelled cell lysates. Studies of immunolocalization demonstrated the presence of the same integrins identified in lysates, plus α4, α1 and β5 subunits. In cells adhering in the presence of serum we showed organization of β3 and αv integrins in focal contacts. In cells adhering to fibronectin α5 and β1 integrins were localized in focal contacts. In cells spread on laminin or type I collagen none of the integrins investigated was localized in focal contacts.  相似文献   

19.
Summary During morphogenesis, tumor progression and metastasis, cell adhesion, dissociation, and migration result from a complex balance between cell-to-cell and cell-to-matrix interactions. Two different organization patterns of MCF-7 cells were induced by different extracellular matrix proteins. When plated on plastic or polymeric type I collagen gel used as a model of interstitial matrix, MCF-7 cells spread and grew in monolayer. When cultured on a solid gel of basement membrane (BM) proteins (85% laminin) used as a model of BM, cells formed clusters attached to the matrix. Matrix proteins regulated these two types of cell organization by preferentially promoting cell-to-cell or cell-support interactions. On plastic in the presence of soluble laminin or on laminin-coated dishes, cells also formed clusters. Addition of soluble fibronectin induced spreading of the cells, suggesting that laminin and fibronectin have competitive antagonistic effects on MCF-7 cell morphology. Antilaminin antibodies inhibited cluster formation and attachment, emphasizing the important role of this glycoprotein not only in promoting cluster attachment but also in cell-to-cell contact formation. Such effects of extracellular matrix proteins could play significant roles in tumor progression and metastasis. This work was supported by grants 3.4512.85 and 3.4514.85 from the Belgian Fonds de la Recherche Scientifique Médicale and the Fonds Cancérologique de la CGER.  相似文献   

20.
Adhesion to extracellular matrix (ECM) proteins plays a crucial role in invasive fungal diseases. ECM proteins bind to the surface of Paracoccidioides brasiliensis yeast cells in distinct qualitative patterns. Extracts from Pb18 strain, before (18a) and after animal inoculation (18b), exhibited differential adhesion to ECM components. Pb18b extract had a higher capacity for binding to ECM components than Pb18a. Laminin was the most adherent component for both samples, followed by type I collagen, fibronectin, and type IV collagen for Pb18b. A remarkable difference was seen in the interaction of the two extracts with fibronectin and their fragments. Pb18b extract interacted significantly with the 120-kDa fragment. Ligand affinity binding assays showed that type I collagen recognized two components (47 and 80kDa) and gp43 bound both fibronectin and laminin. The peptide 1 (NLGRDAKRHL) from gp43, with several positively charged amino acids, contributed most to the adhesion of P. brasiliensis to Vero cells. Synthetic peptides derived from peptide YIGRS of laminin or from RGD of both laminin and fibronectin showed the greatest inhibition of adhesion of gp43 to Vero cells. In conclusion, this work provided new molecular details on the interaction between P. brasiliensis and ECM components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号