首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
  1. Mountain streams in southwestern European Alps are currently shifting from perennial to intermittent flow due to the combined effects of climate change and local anthropogenic pressures. Given that flow intermittency is a recently documented phenomenon in the Alps, only scattered studies have investigated functional and taxonomical diversity of benthic invertebrate communities in recently intermittent Alpine streams.
  2. We used a hierarchical sampling design to investigate patterns in taxonomic and functional diversity of benthic invertebrate communities in 13 recently intermittent Alpine streams in north-west Italy. in April 2017, we sampled benthic communities in two reaches of each stream with different hydrological conditions: a control reach, with permanent flow; and an intermittent reach, which recently experienced non-flow periods in summer.
  3. We tested for the response of taxonomic richness at multiple spatial scales by partitioning total diversity into the average richness of local communities and the richness due to variation among local communities both within and among reaches. By partitioning total diversity (γ) into its local (α) and turnover (β) components we showed a decrease in local and regional species richness both within and among reaches, whereas variation among communities was significantly lower in intermittent reaches at the reach scale only.
  4. The analysis of multidimensional trait space of macroinvertebrate communities in reaches with different hydrological conditions revealed a significant reduction of functional diversity, dispersion, and evenness in intermittent reaches. There was trait overdispersion in intermittent reaches, as these hosted both typical Alpine taxa and organisms adapted to flow intermittency. In particular, we observed the replacement of taxa with aquatic respiration and those preferring medium- to fast-flowing oligotrophic waters by taxa adapted to lentic habitats, air breathing and with larval dormancy phases.
  5. These results indicate that recent flow intermittency has caused drastic changes in benthic invertebrate communities in Alpine streams. Our work highlights the importance of integrating taxonomic and functional diversity to thoroughly assess the impacts of flow intermittency.
  相似文献   

2.
3.
Urbanization, one of the most important anthropogenic impacts on Earth, is rapidly expanding worldwide. This expansion of urban land‐covered areas is known to significantly reduce different components of biodiversity. However, the global evidence for this effect is mainly focused on a single diversity measure (species richness) with a few local or regional studies also supporting reductions in functional diversity. We have used birds, an important ecological group that has been used as surrogate for other animals, to investigate the hypothesis that urbanization reduces the global taxonomical and/or evolutionary diversity. We have also explored whether there is evidence supporting that urban bird communities are evolutionarily homogenized worldwide in comparison with nonurban ones by means of using evolutionary distinctiveness (how unique are the species) of bird communities. To our knowledge, this is the first attempt to quantify the effect of urbanization in more than one single diversity measure as well as the first time to look for associations between urbanization and phylogenetic diversity at a large spatial scale. Our findings show a strong and globally consistent reduction in taxonomic diversity in urban areas, which is also synchronized with the evolutionary homogenization of urban bird communities. Despite our general patterns, we found some regional differences in the intensity of the effect of cities on bird species richness or evolutionary distinctiveness, suggesting that conservation efforts should be adapted locally. Our findings might be useful for conservationists and policymakers to minimize the impact of urban development on Earth's biodiversity and help design more realistic conservation strategies.  相似文献   

4.
《Global Change Biology》2018,24(5):1904-1918
Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat‐forming foundation species may perturb habitat and promote species with generalist, opportunistic traits, in turn affecting spatial patterns of biodiversity. Here, we quantified fish diversity in seagrass communities across 89 sites spanning 6° latitude along the Pacific coast of Canada, to test the hypothesis that anthropogenic disturbances homogenize (i.e., lower beta‐diversity) assemblages within coastal ecosystems. We test for patterns of biotic homogenization at sites within different anthropogenic disturbance categories (low, medium, and high) at two spatial scales (within and across regions) using both abundance‐ and incidence‐based beta‐diversity metrics. Our models provide clear evidence that fish communities in high anthropogenic disturbance seagrass areas are homogenized relative to those in low disturbance areas. These results were consistent across within‐region comparisons using abundance‐ and incidence‐based measures of beta‐diversity, and in across‐region comparisons using incidence‐based measures. Physical and biotic characteristics of seagrass meadows also influenced fish beta‐diversity. Biotic habitat characteristics including seagrass biomass and shoot density were more differentiated among high disturbance sites, potentially indicative of a perturbed environment. Indicator species and trait analyses revealed fishes associated with low disturbance sites had characteristics including stenotopy, lower swimming ability, and egg guarding behavior. Our study is the first to show biotic homogenization of fishes across seagrass meadows within areas of relatively high human impact. These results support the importance of targeting conservation efforts in low anthropogenic disturbance areas across land‐ and seascapes, as well as managing anthropogenic impacts in high activity areas.  相似文献   

5.
Local knowledge systems are not considered in the conservation of fragile seagrass marine ecosystems. In fact, little is known about the utility of seagrasses in local coastal communities. This is intriguing given that some local communities rely on seagrasses to sustain their livelihoods and have relocated their villages to areas with a rich diversity and abundance of seagrasses. The purpose of this study is to assist in conservation efforts regarding seagrasses through identifying Traditional Ecological Knowledge (TEK) from local knowledge systems of seagrasses from 40 coastal communities along the eastern coast of India. We explore the assemblage of scientific and local traditional knowledge concerning the 1. classification of seagrasses (comparing scientific and traditional classification systems), 2. utility of seagrasses, 3. Traditional Ecological Knowledge (TEK) of seagrasses, and 4. current conservation efforts for seagrass ecosystems. Our results indicate that local knowledge systems consist of a complex classification of seagrass diversity that considers the role of seagrasses in the marine ecosystem. This fine-scaled ethno-classification gives rise to five times the number of taxa (10 species = 50 local ethnotaxa), each with a unique role in the ecosystem and utility within coastal communities, including the use of seagrasses for medicine (e.g., treatment of heart conditions, seasickness, etc.), food (nutritious seeds), fertilizer (nutrient rich biomass) and livestock feed (goats and sheep). Local communities are concerned about the loss of seagrass diversity and have considerable local knowledge that is valuable for conservation and restoration plans. This study serves as a case study example of the depth and breadth of local knowledge systems for a particular ecosystem that is in peril.  相似文献   

6.
The relationship between local and regional diversity was tested by regressing local community richness against regional species diversity for three taxa, birds, butterflies and mammals, in subtropical forest. The quadratic model best fits the relationship between local and regional diversity for birds. Local bird species richness is theoretically independent of the size of the regional pool of species and may represent saturated communities. A linear model best describes the relationship for mammals and butterflies. For mammals, the slope is shallow (0.264) and regional richness overestimates local species richness, suggesting communities are undersaturated. Extinction filtering may explain this pattern. Past climatic changes have filtered out many mammalian species, these changes have been too recent for autochthanous speciation, and the relatively low vagility of mammals has prevented extensive recolonisation. Differences in the nature of the diversity relationship between taxa are as much due to independent evolutionary histories as to differences in vagility and colonising potential. A pervasive role is suggested for regional biogeographic processes in the development of faunal assemblage structure. Large-scale processes are not considered in current conservation plans. We encourage the shift of conservation emphasis from local ecological processes and species interactions, to whole communities and consideration of regional processes.  相似文献   

7.
Limberger R  Wickham SA 《Oecologia》2012,168(3):785-795
The spatial scale of disturbance is a factor potentially influencing the relationship between disturbance and diversity. There has been discussion on whether disturbances that affect local communities and create a mosaic of patches in different successional stages have the same effect on diversity as regional disturbances that affect the whole landscape. In a microcosm experiment with metacommunities of aquatic protists, we compared the effect of local and regional disturbances on the disturbance–diversity relationship. Local disturbances destroyed entire local communities of the metacommunity and required reimmigration from neighboring communities, while regional disturbances affected the whole metacommunity but left part of each local community intact. Both disturbance types led to a negative relationship between disturbance intensity and Shannon diversity. With strong local disturbance, this decrease in diversity was due to species loss, while strong regional disturbance had no effect on species richness but reduced the evenness of the community. Growth rate appeared to be the most important trait for survival after strong local disturbance and dominance after strong regional disturbance. The pattern of the disturbance–diversity relationship was similar for both local and regional diversity. Although local disturbances at least temporally increased beta diversity by creating a mosaic of differently disturbed patches, this high dissimilarity did not result in regional diversity being increased relative to local diversity. The disturbance–diversity relationship was negative for both scales of diversity. The flat competitive hierarchy and absence of a trade-off between competition and colonization ability are a likely explanation for this pattern.  相似文献   

8.
Understanding and predicting how biological communities respond to climate change is critical for assessing biodiversity vulnerability and guiding conservation efforts. Glacier‐ and snow‐fed rivers are one of the most sensitive ecosystems to climate change, and can provide early warning of wider‐scale changes. These rivers are frequently used for hydropower production but there is minimal understanding of how biological communities are influenced by climate change in a context of flow regulation. This study sheds light on this issue by disentangling structural (water temperature preference, taxonomic composition, alpha, beta and gamma diversities) and functional (functional traits, diversity, richness, evenness, dispersion and redundancy) effects of climate change in interaction with flow regulation in the Alps. For this, we compared environmental and aquatic invertebrate data collected in the 1970s and 2010s in regulated and unregulated alpine catchments. We hypothesized a replacement of cold‐adapted species by warming‐tolerant ones, high temporal and spatial turnover in taxa and trait composition, along with reduced taxonomic and functional diversities in consequence of climate change. We expected communities in regulated rivers to respond more drastically due to additive or synergistic effects between flow regulation and climate change. We found divergent structural but convergent functional responses between free‐flowing and regulated catchments. Although cold‐adapted taxa decreased in both of them, greater colonization and spread of thermophilic species was found in the free‐flowing one, resulting in higher spatial and temporal turnover. Since the 1970s, taxonomic diversity increased in the free flowing but decreased in the regulated catchment due to biotic homogenization. Colonization by taxa with new functional strategies (i.e. multivoltine taxa with small body size, resistance forms, aerial dispersion and reproduction by clutches) increased functional diversity but decreased functional redundancy through time. These functional changes could jeopardize the ability of aquatic communities facing intensification of ongoing climate change or new anthropogenic disturbances.  相似文献   

9.
Although studies have explored how habitat structure and disturbance affect arthropod communities, few have explicitly tested the effects of both structure and disturbance level across trophic levels and phyla. We present here the results of a study conducted in the Arabuko‐Sokoke Forest (ASF) of coastal Kenya, in which abundance of arthropods and one of their avian predators, the East Coast Akalat Sheppardia gunning sokokensis was compared in relatively undisturbed habitat (outside elephant roaming areas) and in disturbed habitat (inside elephant roaming areas). Vegetation structure in both areas was measured using several metrics, including leaf litter depth, understory vegetation density, animal disturbance and fallen log counts. Leaf litter and coleopteran abundance were higher outside the elephant roaming areas, whereas understory visibility, animal disturbance and dipteran diversity were much higher inside the elephant areas. Species composition of several arthropod taxa (e.g. Hymenoptera, Coleoptera, Diptera, Hemiptera and Araneae) was also influenced by degree of disturbance, whereas akalat abundance was inversely related to understory visibility. Our results suggest that differences in species sensitivity to habitat disturbance and vegetation structure across trophic levels should be incorporated into the management and conservation of rare and endangered species.  相似文献   

10.
Diversity in biological communities frequently is compared using species accumulation curves, plotting observed species richness versus sample size. When species accumulation curves intersect, the ranking of communities by observed species richness depends on sample size, creating inconsistency in comparisons of diversity. We show that species accumulation curves for two communities are expected to intersect when the community with lower actual species richness has higher Simpson diversity (probability that two random individuals belong to different species). This may often occur when comparing communities that differ in habitat heterogeneity or disturbance, as we illustrate using data from neotropical butterflies. In contrast to observed species richness, estimated Simpson diversity always produces a consistent expected ranking among communities across sample sizes, with the statistical accuracy to confidently rank communities using small samples. Simpson diversity should therefore be particularly useful in rapid assessments to prioritize areas for conservation.  相似文献   

11.
Local communities often conserve nearby natural areas to support recreational activities and other benefits these areas provide. Areas protected by local communities could contribute to wider efforts to achieve large-scale conservation goals, such as biodiversity protection, provided the ecological conditions on-site are compatible with achieving these goals. To explore the potential contribution of locally established protected areas, we focus on areas protected by local communities in California, USA, using ballot initiatives, a form of direct democracy. We compare the ecological condition of wooded habitat on protected areas funded by local communities through the ballot box to that of similar habitats on protected areas funded by a state conservation agency. As an indicator of ecological condition, we focus on coverage by exotic plant species. We examine whether protected area characteristics or aspects of human-mediated onsite disturbance related to recreational use explain exotic plant cover found on each type of protected area. Exotic plant cover did not differ between areas protected by local communities and those protected by our larger scale conservation actor. Instead, elevation was the best predictor of exotic plant cover. Our results suggest protected areas established by local communities may be in no worse a condition than those established by a state public agency and warrant inclusion when tracking progress towards large-scale conservation goals for protected areas.  相似文献   

12.
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.  相似文献   

13.
Six regions of northwestern (NW) Baja California (Sierra de Juárez, Sierra de San Pedro Mártir, Punta Banda, Colonet, San Quintín and Valle Tranquilo) were compared for their floristic diversity. Checklists for each region were analyzed by their total, native, and endemic floras to give measures of floristic similarity and overlap, and to identify the strongest gradients affecting species distributions. Each region was floristically distinct, with significant variation in the distribution of state endemic taxa. The six regions are readily differentiated by their geographical position in a Principal Components Analysis. The strongest gradients were (a) the W–E gradient from the coast to the mountains and (b) the latitudinal gradient from N to S. These six adjacent regions are found within a local and global biodiversity hotspot that is subject to intense conservation challenges. Conservation of many areas is essential to adequately preserve the diversity of locally endemic taxa with restricted ranges, yet the coast lacks any protected areas at the state and federal level. Private reserves such as Reserva Natural San Quintín may be critical to the conservation of regionally endemic taxa.  相似文献   

14.
The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well‐characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time‐calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.  相似文献   

15.
In this paper we demonstrate that, by investigating polyploid complexes in Asplenium, it is possible to locate the areas in Europe that are southern glacial rcfugia, and arc likely to have been so since the beginning of the Pleistocene during the consecutive cold and warm periods in Europe. Identification and conservation of these specific areas that serve as safe havens for plants, and perhaps animals, is of paramount importance for the maintenance of European biodiversity because Man's activities arc resulting in an ever-increasing loss of natural habitats and putting diversity at risk. The genus Asplenium in Europe comprises some 50 taxa: half of these are diploid while the other half arc polyploids derived from the diploids. All aspleniums in Europe are (small) rock ferns with high substrate specificity. Today, most of mainland Europe, Scandinavia and the British Isles has been colonized by polyploid Asplenium species, while the diploids that gave rise to these polyploids are distributed around (and more or less confined to) the Mediterranean Basin. In the tetraploids genetic variation is partitioned mostly between sites, whereas diploids show a high degree of genetic variation both within and between sites. The tctraploid taxa seem capable of single spore colonization via intragametophytic selfing, but the diploid taxa appear to be predominantly outbreeding. For most diploids at least two gametophytes, produced by different spores, have to be present to achieve fertilization and subsequent sporophyte formation for the successful colonization of a new site. This results in a slower rate of colonization. The formation of auto- and allopolyploid taxa from diploid communities appears to have been a recurrent and common feature in Europe. Minority cytotypc exclusion is likely to prevent the establishment of tetraploids within the diploid communities, but spores from tetraploids can establish populations outside the diploid communities. The differences between colonization abilities of tctraploid and ancestral diploid taxa, resulting from their different breeding systems, has prevented the merging and mingling of their ranges and led to the establishment of contact/ hybrid zones. This has resulted in the restriction of diploid populations to ancient glacial rcfugia and the colonization of the rest of Europe by polyploids. Mapping the current distribution of these diploid communities and comparing the genetic diversity within and between outbreeding diploid Asplenium taxa allows us to define the area, age and historical biogcography of these rcfugia and to assess their importance for present day genetic and species diversity in Europe.  相似文献   

16.
Humans affect biological diversity and species distribution patterns by modifying resource availability and generating novel environments where generalist species benefit and specialist species are rare. In particular, cities create local homogenization while roads fragment habitat, although both processes can increase food availability for some species that may be able to take advantage of this new source. We studied space use by birds of prey in relation to human construction, hypothesizing that these birds would be affected even in poorly populated areas. We worked in Northwestern Patagonia, Argentina, which is experiencing a high population growth, but still having very large unpopulated areas. We related the presence of raptors with different sources of human disturbance and found that both the abundance and richness of these birds were positively associated with anthropogenic environments. These results are driven mostly by a strong association between the medium-sized generalist species and these novel environments (mainly roads and cities). This may create an imbalance in intra-guild competitive abilities, modifying the normal structures of top carnivore hierarchies. Indeed, the structure of raptor communities seems to be changing, even in poorly populated areas, with anthropogenic constructions seemingly producing changes in wild areas more promptly than thought, a cause for concern in ecosystems conservation issues.  相似文献   

17.
The creation of Protected Areas was one of the first measures taken for the protection of biodiversity and it is still the most widely used. The establishment of systems to evaluate the effectiveness of the management of these areas are crucial to validate their importance for conservation and guide the managers towards their conservation goals. Aculeate Hymenoptera, specifically Apiformes and Spheciformes, gather exceptional characteristics as bioindicators and are essential to ecosystem sustainability by including key pollinators (Apiformes), contribute for the maintenance of the equilibrium between arthropod populations (Spheciformes), and also reflect the patterns of other taxa. Apiformes and Spheciformes communities were sampled with Malaise traps in eight different habitats initially identified by habitat type (mainly vegetation). These communities were evaluated to determine if the habitats could be differentiated based on their Apiformes and Spheciformes generic communities. Apiformes and Spheciformes diversity provided limited differentiation between habitats but was able to differentiate the most disturbed habitat from the most pristine. In general, Apiformes and Spheciformes communities were different among the eight habitats. It was also possible to establish a relation between some genera and a specific habitat type. Several genera of Apiformes and Spheciformes showed a preference for the riparian galery (RLR) and a mixed woodland (COZ), providing a general idea of the ideal conditions for the development of these groups. These results suggest that Apiformes and Spheciformes communities are a suitable management tool for habitat evaluation.  相似文献   

18.
Species diversity within communities and genetic diversity within species are two fundamental levels of biodiversity. Positive relationships between species richness and within-species genetic diversity have recently been documented across natural and semi-natural habitat islands, leading Vellend to suggest a novel macro-ecological pattern termed the species-genetic diversity correlation. We tested whether this prediction holds for areas affected by recent habitat disturbance using butterfly communities in east Kalimantan, Indonesia. Here, we show that both strong spatial and temporal correlations exist between species and allelic richness across rainforest habitats affected by El Niño Southern Oscillation-induced disturbance. Coupled with evidence that changes in species richness are a direct result of local extirpation and lower recruitment, these data suggest that forces governing variation at the two levels operate over parallel and short timescales, with implications for biodiversity recovery following disturbance. Remnant communities may be doubly affected, with reductions in species richness being associated with reductions in genetic diversity within remnant species.  相似文献   

19.
Qinfeng Guo 《Oecologia》1996,106(2):247-256
The effects of bannertail kangaroo rat (Dipodomys spectabilis) mounds and associated soil-surface disturbance on plant species composition and diversity in the Chihuahuan Desert were examined with multivariate analysis. Kangaroo rat mounds created disturbance gaps and contributed to local species diversity by creating microhabitats that supported unique plant communities. These microhabitats supported populations of species that were relatively rare in surrounding areas. The diversity observed at the whole habitat level resulted from (1) local spatial heterogeneity, because the mounds offered microenvironments with distinctive nutrient, water, and light conditions; and (2) local patterning of disturbance, because the digging and traffic of the kangaroo rats maintained high levels of soil disturbance at and near the mounds. At a finer scale, species diversity was highest in the area immediately adjacent to active and inactive mounds, and was lower on both the highly disturbed soil of the mounds and in the relatively undisturbed area between mounds. Lowest species diversity occurred on inactive mounds. Annual plant biomass was much greater on mounds than in inter-mound areas. The results support the predictions that intermediate levels of disturbance and small-scale environmental heterogeneity contribute to supporting high species diversity.  相似文献   

20.
Italian north Tyrrhenian regions harbour pure or nearly pure cork oak woodlands towards the NE limit of the species range and the highest proportion of the habitat on mainland Italy, but their distribution, biodiversity and conservation status are still poorly known. Focusing on the key region of Tuscany, we analysed distribution and plant species richness of these forests based on literature and original field data. The habitat covers about 5.730?ha and is strongly fragmented for natural and non-natural reasons, underscoring its relict character. Out of the 420 plant taxa recorded, 19 were listed in IUCN categories at the national or regional level. Taxonomic singularity was especially high at the genus rank. Three neighbouring areas with different soil conditions and forest structure were compared based on field surveys, sample plots and linear transects from dense stands to shrub and herbaceous communities of small openings. The Versegge site showed the highest species richness at the area-scale and the mean diversity at the plot scale, representing a key biotope for the conservation of the habitat. However, the geographic–floristic covariation between the three sites suggested that a network of small areas would be more effective than a single, large area to protect the most significant components of the local cork oak flora. The Lattaia and Terzo areas may play an important role as corridor sites between the four SCIs of the Rete Natura 2000 network including cork oak communities on the Tuscan mainland. Species richness was higher in the stands with lower cork oak basal area, and there was a significant increase in species number along transects reaching openings caused by traditional human activities. A minor anthropic disturbance of traditional type may help to preserve the fine-scale habitat heterogeneity and the biodiversity of the whole ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号