首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human osteoblast-like MG-63cells, extracellular ATP increased [3H]thymidineincorporation and cell proliferation and synergistically enhancedplatelet-derived growth factor- or insulin-like growth factor I-induced[3H]thymidine incorporation. ATP-induced[3H]thymidine incorporation was mimicked by thenonhydrolyzable ATP analogs adenosine5'-O-(3-thiotriphosphate) and adenosine 5'-adenylylimidodiphosphate and was inhibited by the P2purinoceptor antagonist suramin, suggesting involvement of P2purinoceptors. The P2Y receptor agonist UTP and UDP and a P2Y receptorantagonist reactive blue 2 did not affect [3H]thymidineincorporation, whereas the P2X receptor antagonist pyridoxalphosphate-6-azophenyl-2',4-disulfonic acid inhibited ATP-induced[3H]thymidine incorporation, suggesting that ATP-inducedDNA synthesis was mediated by P2X receptors. RT-PCR analysis revealedthat MG-63 cells expressed P2X4, P2X5,P2X6, and P2X7, but not P2X1,P2X2, and P2X3, receptors. In fura 2-loadedcells, not only ATP, but also UTP, increased intracellularCa2+ concentration, and inhibitors for severalCa2+-activated protein kinases had no effect on ATP-inducedDNA synthesis, suggesting that an increase in intracellularCa2+ concentration is not indispensable for ATP-induced DNAsynthesis. ATP increased mitogen-activated protein kinase activity in aCa2+-independent manner and synergistically enhancedplatelet-derived growth factor- or insulin-like growth factor I-inducedkinase activity. Furthermore, the mitogen-activated protein kinasekinase inhibitor PD-98059 totally abolished ATP-induced DNA synthesis. We conclude that ATP increases DNA synthesis and enhances the proliferative effects of growth factors through P2X receptors byactivating a mitogen-activated protein kinase pathway.

  相似文献   

2.
We used theCa2+-sensitive fluorescent dyefura 2, together with measurements of intracellularD-myo-inositol1,4,5-trisphosphate [Ins(1,4,5)P3],to assess the inhibitory effects of caffeine on signal transduction viaG protein-coupled receptor pathways in isolated rat mandibular salivaryacinar cells. ACh, norepinephrine (NE), and substance P (SP) all evokedsubstantial increases in the intracellular freeCa2+ concentration([Ca2+]i).Responses to ACh and NE were markedly inhibited by prior application of20 mM caffeine. The inhibitory effect of caffeine was not reproduced byphosphodiesterase inhibition with IBMX or addition of cell-permeantdibutyryl cAMP. In contrast to the ACh and NE responses, the[Ca2+]iresponse to SP was unaffected by caffeine. Despite this, SP and AChappeared to mobilize Ca2+ from acommon intracellular pool. Measurements of agonist-induced changes inIns(1,4,5)P3levels confirmed that caffeine inhibited the stimulus-response couplingpathway at a point beforeIns(1,4,5)P3 generation. Caffeine did not, however, inhibit[Ca2+]iresponses evoked by direct activation of G proteins with 40 mMF. These data show thatcaffeine inhibits G protein-coupled signal transduction in these cellsat some element that is common to the muscarinic and -adrenergicsignaling pathways but is not shared by the SP signaling pathway. Wesuggest that this element might be a specific structural motif on the Gprotein-coupled muscarinic and -adrenergic receptors.  相似文献   

3.
Spiral waves of intracellularCa2+ have often been observed inXenopus oocytes. Such waves can beaccounted for by most realistic models forCa2+ oscillations taking diffusionof cytosolic Ca2+ into account,but their initiation requires rather demanding and unphysiologicalinitial conditions. Here, it is shown by means of numerical simulationsthat these spiral Ca2+ wavesnaturally arise if the cytoplasm is assumed to be heterogeneous both atthe level of the synthesis and metabolism ofD-myo-inositol 1,4,5-trisphosphate[Ins(1,4,5)P3]and at the level of the distribution of theIns(1,4,5)P3receptors. In such conditions, a spiral can be initiated in thesimulations after an increase inIns(1,4,5)P3 concentration, with the direction of rotation being determined by theposition of the region of high receptor density with respect to thelocus ofIns(1,4,5)P3production.

  相似文献   

4.
Interactions between ATP and adenosine on the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and mobilization of intracellular calcium were investigated in the smooth muscle cell line DDT1 MF-2. Activation of adenosine A1 receptors with adenosine or cyclopentyladenosine (CPA) or of nucleotide receptors with ATP increased both Ins(1,4,5)P3 formation and intracellular calcium concentrations. The A1 receptor-induced Ins(1,4,5)P3 formation (EC50 10 nM) was antagonized by the A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and by pretreatment of the cells with pertussis toxin (PTX). ATP-stimulated Ins(1,4,5)P3 formation (EC50 21 microM) was attenuated, but still present, after PTX treatment. ATP and CPA had supraadditive effects on Ins(1,4,5)P3 accumulation and CPA increased ATP-induced Ins(1,4,5)P3 accumulation in a concentration-dependent manner with an EC50 of 3 nM, a concentration which per se had little or no effect on Ins(1,4,5)P3 accumulation. ATP (EC50 4 microM) and CPA (EC50 4 nM) both increased intracellular calcium levels. The effect of ATP was partially sensitive to PTX treatment, whereas the effect of CPA was blocked both by PTX and by DPCPX. Concentrations of ATP and CPA that by themselves were insufficient to raise intracellular calcium were able to do so when combined. The synergy between ATP and CPA on the mobilization of intracellular calcium was abolished after treatment of cells with PTX or when DPCPX was included in the experiment. Since ATP was metabolized by ecto-enzymes to ADP, AMP, and adenosine, we also examined whether adenosine formed from ATP could enhance the ATP effects on Ins(1,4,5)P3 accumulation. Indeed, the addition of the A1 receptor antagonist DPCPX or removal of endogenous adenosine by inclusion of adenosine deaminase in the experimental medium significantly attenuated the ATP response, and the two treatments did not have additive effects. The present study thus demonstrates that in a clonal cell line two types of receptors increase phospholipase C activity, but via different pathways; nucleotide receptors appeared to act via partially PTX-insensitive, and A1 receptors via PTX-sensitive G-proteins. ATP and CPA are not only able per se to induce formation of Ins(1,4,5)P3 and mobilize intracellular calcium, but they also act synergistically. Finally, it is demonstrated that endogenous adenosine, possibly formed from the rapid breakdown of ATP, can significantly enhance some ATP effects.  相似文献   

5.
Thyroid cells express a variety of P2Y and P2X purinergic receptor subtypes. G protein-coupled P2Y receptors influence a wide variety of thyrocyte-specific functions; however, functional P2X receptor-gated channels have not been observed. In this study, we used whole cell patch-clamp recording and fluorescence imaging of the plasma membrane marker FM1-43 to examine the effects of extracellular ATP on membrane permeability and trafficking in the Fisher rat thyroid cell line FRTL. We found a cation-selective current that was gated by ATP and 2',3'-O-(4-benzoylbenzoyl)-ATP but not by UTP. The ATP-evoked currents were inhibited by pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid, adenosine 5'-triphosphate-2',3'-dialdehyde, 100 µM Zn2+, and 50 µM Cu2+. Fluorescence imaging revealed pronounced, temperature-sensitive stimulation of exocytosis and membrane internalization by ATP with the same pharmacological profile as observed for activation of current. The EC50 for ATP stimulation of internalization was 440 µM in saline containing 2 mM Ca2+ and 2 mM Mg2+, and 33 µM in low-Mg2+, nominally Ca2+-free saline. Overall, the results are most consistent with activation of a P2X7 receptor by ATP4–. However, low permeability to N-methyl-D-glucamine+ and the propidium cation YO-PRO-1 indicates absence of the cytolytic pore that often accompanies P2X7 receptor activation. ATP stimulation of internalization occurs in Na+-free, Ca2+-free, or low-Mg2+ saline and therefore does not depend on cation influx through the ATP-gated channel. We conclude that ATP activation of a P2X7 receptor stimulates membrane internalization in FRTL cells via a transduction pathway that does not depend on cation influx. purinergic receptor; internalization; patch clamp  相似文献   

6.
ATP is released into extracellular space as an autocrine/paracrine molecule by mechanical stress and pharmacological-receptor activation. Released ATP is partly metabolized by ectoenzymes to adenosine. In the present study, we found that adenosine causes ATP release in Madin-Darby canine kidney cells. This release was completely inhibited by CPT (an A1 receptor antagonist), U-73122 (a phospholipase C inhibitor), 2-APB (an inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) receptor blocker), thapsigargin (a Ca2+-ATPase inhibitor), and BAPTA/AM (an intracellular Ca2+ chelator), but not by DMPX (an A2 receptor antagonist). However, forskolin, epinephrine, and isoproterenol, inducers of cAMP accumulation, failed to release ATP. Adenosine increased intracellular Ca2+ concentrations that were strongly blocked by CPT, U-73122, 2-APB, and thapsigargin. Moreover, adenosine enhanced accumulations of Ins(1,4,5)P3 that were significantly reduced by U-73122 and CPT. These data suggest that adenosine induces the release of ATP by activating an Ins(1,4,5)P3 sensitive-Ca2+ pathway through the stimulation of A1 receptors.  相似文献   

7.
An increase in intracellular free Ca2+ concentration ([Ca2+]i) has been shown to be involved in the increase in ciliary beat frequency (CBF) in response to ATP; however, the signaling pathways associated with inositol 1,4,5-trisphosphate (IP3) receptor-dependent Ca2+ mobilization remain unresolved. Using radioimmunoassay techniques, we have demonstrated the appearance of two IP3 peaks occurring 10 and 60 s after ATP addition, which was strongly correlated with a release of intracellular Ca2+ from internal stores and an influx of extracellular Ca2+, respectively. In addition, ATP-dependent Ca2+ mobilization required protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II activation. We found an increase in PKC activity in response to ATP, with a peak at 60 s after ATP addition. Xestospongin C, an IP3 receptor blocker, significantly diminished both the ATP-induced increase in CBF and the initial transient [Ca2+]i component. ATP addition in the presence of xestospongin C or thapsigargin revealed that the Ca2+ influx is also dependent on IP3 receptor activation. Immunofluorescence and confocal microscopic studies showed the presence of IP3 receptor types 1 and 3 in cultured ciliated cells. Immunogold electron microscopy localized IP3 receptor type 3 to the nucleus, the endoplasmic reticulum, and, interestingly, the plasma membrane. In contrast, IP3 receptor type 1 was found exclusively in the nucleus and the endoplasmic reticulum. Our study demonstrates for the first time the presence of IP3 receptor type 3 in the plasma membrane in ciliated cells and leads us to postulate that the IP3 receptor can directly trigger Ca2+ influx in response to ATP. transduction mechanisms; P2Y receptor; calcium influx  相似文献   

8.
Micromolar concentrations ofATP stimulate biphasic change in transepithelial conductance acrossCaSki cultures, an acute increase (phase I response) followed by aslower decrease (phase II response). Phase I andphase II responses involve two distinct calcium-dependentpathways, calcium mobilization and calcium influx. To test thehypothesis that phase I and phase II responsesare mediated by distinct P2 purinergic receptors, changes inpermeability were uncoupled by blocking calcium mobilization with1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(BAPTA) or by lowering extracellular calcium, respectively. Under theseconditions ATP EC50 was 25 µM for phase Iresponse and 2 µM for phase II response. The respectiveagonist profiles were ATP > UTP > adenosine5'-O-(3-thiotriphosphate) (ATP-S) N6-([6-aminohexyl]carbamoylmethyl)adenosine5'-triphosphate (A8889) > GTP and UTP > ATP > GTP = A8889 > ATP-S. Suramin blocked phase Iresponse and ATP-induced calcium mobilization, whereas pyridoxal phosphate-6-azophenyl-2',4-disulfonic acid (PPADS) blocked phase II response and ATP-augmented calcium influx. ATP time course andpharmacological profiles for phase II response and augmented calcium influx were similar, with a time constant of 2 min and asaturable concentration-dependent effect (EC50 of 2-3µM). RT-PCR experiments revealed expression of mRNA for both theP2Y2 and P2X4 receptors. These results suggestthat the ATP-induced phase I and phase IIresponses are mediated by distinct P2 purinergic receptor mechanisms.

  相似文献   

9.
Nucleotides are released during vascular injury from activated platelets and broken cells, which could stimulate human neutrophils. In this study, we characterized the P2Y receptors and investigated the functional effects of extracellular nucleotides on human neutrophils. Pharmacological characterization using selective agonists and pertussis toxin revealed that human neutrophils express only functional P2Y2 receptors. However, P2Y2 receptor agonists ATP or uridine triphosphate (UTP) caused intracellular Ca2+ increases in isolated human neutrophils with an EC50 of 1 µM but failed to cause release of primary granules from human neutrophils. ATP and UTP were equally potent in causing elastase release from human neutrophils in the presence of exogenous soluble fibrinogen, whereas ADP and UDP were without effect. We investigated whether nucleotides depend on generated arachidonic acid metabolites to cause degranulation. However, phenidone and MK-886, inhibitors of the 5-lipoxygenase pathway, failed to block nucleotide-induced intracellular calcium mobilization and elastase release. ATP and UTP caused activation of p38 MAPK and ERK1/2 in human neutrophils. In addition, the inhibitors of the MAPK pathway, SB-203580 and U-0126, inhibited nucleotide-induced elastase release. We conclude that fibrinogen is required for nucleotide-induced primary granule release from human neutrophils through the P2Y2 receptor without a role for arachidonic acid metabolites. Both ERK1/2 and p38 MAPK play an important role in nucleotide-induced primary granule release from human neutrophils. elastase release; fibrinogen; extracellular nucleotides; uridine triphosphate; adenosine triphosphate  相似文献   

10.
The regulatory actions ofadenosine on ion channel function are mediated by four distinctmembrane receptors. The concentration of adenosine in the vicinity ofthese receptors is controlled, in part, by inwardly directed nucleosidetransport. The purpose of this study was to characterize the effects ofadenosine on ion channels in A549 cells and the role of nucleosidetransporters in this regulation. Ion replacement and pharmacologicalstudies showed that adenosine and an inhibitor of human equilibrative nucleoside transporter (hENT)-1, nitrobenzylthioinosine, activated K+ channels, most likely Ca2+-dependentintermediate-conductance K+ (IK)channels. A1 but not A2 receptor antagonistsblocked the effects of adenosine. RT-PCR studies showed that A549 cellsexpressed mRNA for IK-1 channels as well asA1, A2A, and A2B but notA3 receptors. Similarly, mRNA for equilibrative (hENT1 andhENT2) but not concentrative (hCNT1, hCNT2, and hCNT3) nucleosidetransporters was detected, a result confirmed in functional uptakestudies. These studies showed that adenosine controls the function ofK+ channels in A549 cells and that hENTs play a crucialrole in this process.

  相似文献   

11.
Lymphocytes from normal subjects and patients with B-chroniclymphocytic leukemia (B-CLL) show functional responses to extracellular ATP characteristic of the P2X7 receptor (previously termedP2Z). These responses include opening of a cation-selectivechannel/pore that allows entry of the fluorescent dye ethidium andactivation of a membrane metalloprotease that sheds the adhesionmolecule L-selectin. The surface expression of P2X7receptors was measured in normal leucocytes, platelets, and B-CLLlymphocytes and correlated with their functional responses. Monocytesshowed four- to fivefold greater expression of P2X7 than B,T, and NK lymphocytes, whereas P2X7 expression onneutrophils and platelets was weak. All cell types demonstratedabundant intracellular expression of this receptor. All 12 subjectswith B-CLL expressed lymphocyte P2X7 at about the samelevel as B lymphocytes from normal subjects. P2X7 function, measured by ATP-induced uptake of ethidium, correlated closely withsurface expression of this receptor in normal and B-CLL lymphocytes andmonocytes (n = 47, r = 0.70; P< 0.0001). However, in three patients the ATP-induced uptake ofethidium into the malignant B lymphocytes was low or absent. The lackof P2X7 function in these B lymphocytes was confirmed bythe failure of ATP to induce Ba2+ uptake into theirlymphocytes. This lack of function of the P2X7 receptorresulted in a failure of ATP-induced shedding of L-selectin, anadhesion molecule that directs the recirculation of lymphocytes fromblood into the lymph node.

  相似文献   

12.
In epithelial cells, several intracellular signals regulate the secretion of large molecules such as mucin via exocytosis and the transport of ions through channels and transporters. Using carbon fiber amperometry, we previously reported that exocytosis of secretory granules in dog pancreatic duct epithelial cells (PDEC) can be stimulated by pharmacological activation of cAMP-dependent protein kinase (PKA) or protein kinase C (PKC), as well as by an increase of intracellular free Ca2+ concentration ([Ca2+]i). In this study, we examined whether exocytosis in these cells is modulated by activation of endogenous P2Y receptors, which increase cAMP and [Ca2+]i. Low concentrations of ATP (<10 µM) induced intracellular Ca2+ oscillation but no significant exocytosis. In contrast, 100 µM ATP induced a sustained [Ca2+]i rise and increased the exocytosis rate sevenfold. The contribution of Ca2+ or cAMP pathways to exocytosis was tested by using the Ca2+ chelator BAPTA or the PKA inhibitors H-89 or Rp-8-bromoadenosine 3',5'-cyclic monophosphorothioate. Removal of [Ca2+]i rise or inhibition of PKA each partially reduced exocytosis; when combined, they abolished exocytosis. In conclusion, ATP at concentrations >10 µM stimulates exocytosis from PDEC through both Ca2+ and cAMP pathways. secretion; amperometry; photometry; calcium, adenosine 3',5'-cyclic monophosphate  相似文献   

13.
Extracellular ATP is known to trigger apoptosis of thymocytesand lymphocytes through a P2Z receptor at which ATP is a partial agonist, giving only 70% of the maximum response of3'-O-(4-benzoyl)benzoyl-adenosine 5'-triphosphate (BzATP), a full agonist. This cytolytic receptor and its associated ion channel areCa2+ (andBa2+) selective but also passmolecules up to the size of ethidium cation (314 Da).RT-PCR showed identity between lymphocyte P2Z and thehP2X7 gene recently cloned fromhuman monocytes. When human leukemic B lymphocytes were incubated withATP and133Ba2+,an immediate influx of isotope occurred. It was augmented by 45% whenATP was added 10 min before isotope. Time-resolved flow cytometry wasused to examine kinetics of ethidium uptake in cells incubated withBzATP or the partial agonists ATP, 2-methylthioadenosine 5'-triphosphate, or adenosine5'-O-(3-thiotriphosphate).Maximally effective concentrations of BzATP (50 µM) induced immediateuptake of ethidium at a rate linear with time. In contrast, a delay was observed (30 s) before ethidium uptake commenced after addition ofmaximally effective ATP concentrations (500 µM) at 37°C, and thedelay was longer at 24°C. ATP addition 2-10 min beforeethidium abolished the delay. The delay was longer with other partialagonists and inversely related to maximal flux produced by agonist. Adelay was also observed for submaximal BzATP concentrations (10-20µM). P2Z/P2X7 inhibitors, KN-62and5-(N,N-hexamethylene)-amiloride, reduced the rate of agonist-induced ethidium uptake and lengthened thedelay. The results support a model in which agonists forP2Z/P2X7 receptor mediate animmediate channel opening allowing passage of small inorganic cations,followed by a slow further permeability increase allowing passage oflarger permeant cations like ethidium. The rate of the second stepdepends on time and temperature and the efficacy and concentration ofagonist and is slowed by antagonists, suggesting it depends on thefraction of P2Z/P2X7 channels held in the initial openstate.

  相似文献   

14.
We previously reported that glucosamine and hyperglycemia attenuate the response of cardiomyocytes to inositol 1,4,5-trisphosphate-generating agonists such as ANG II. This appears to be related to an increase in flux through the hexosamine biosynthesis pathway (HBP) and decreased Ca2+ entry into the cells; however, a direct link between HBP and intracellular Ca2+ homeostasis has not been established. Therefore, using neonatal rat ventricular myocytes, we investigated the relationship between glucosamine treatment; the concentration of UDP-N-acetylglucosamine (UDP-GlcNAc), an end product of the HBP; and the level of protein O-linked N-acetylglucosamine (O-GlcNAc) on ANG II-mediated changes in intracellular free Ca2+ concentration ([Ca2+]i). We found that glucosamine blocked ANG II-induced [Ca2+]i increase and that this phenomenon was associated with a significant increase in UDP-GlcNAc and O-GlcNAc levels. O-(2-acetamido-2-deoxy-D-glucopyranosylidene)-amino-N-phenylcarbamate, an inhibitor of O-GlcNAcase that increased O-GlcNAc levels without changing UDP-GlcNAc concentrations, mimicked the effect of glucosamine on the ANG II-induced increase in [Ca2+]i. An inhibitor of O-GlcNAc-transferase, alloxan, prevented the glucosamine-induced increase in O-GlcNAc but not the increase in UDP-GlcNAc; however, alloxan abrogated the inhibition of the ANG II-induced increase in [Ca2+]i. These data support the notion that changes in O-GlcNAc levels mediated via increased HBP flux may be involved in the regulation of [Ca2+]i homeostasis in the heart. hypertrophy; left ventricle; calcium channels; calcium signaling  相似文献   

15.
We investigated the role of intracellular Mg2+(Mgi2+) on the ATP regulation ofNa+/Ca2+ exchanger in squid axons and bovineheart. In squid axons and nerve vesicles, the ATP-upregulated exchangerremains activated after removal of cytoplasmic Mg2+, evenin the absence of ATP. Rapid and complete deactivation of theATP-stimulated exchange occurs upon readmission ofMgi2+. At constant ATP concentration, the effectof intracellular Mg2+ concentration([Mg2+]i) on the ATP regulation of exchangeris biphasic: activation at low [Mg2+]i,followed by deactivation as [Mg2+]i isincreased. No correlation was found between the above results and thelevels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] measured innerve membrane vesicles. Incorporation ofPtdIns(4,5)P2 into membrane vesicles activates Na+/Ca2+ exchange in mammalian heart but not insquid nerve. Moreover, an exogenous phosphatase prevents MgATPactivation in squid nerves but not in mammalian heart. It is concludedthat 1) Mgi2+ is an essentialcofactor for the deactivation part of ATP regulation of the exchangerand 2) the metabolic pathway of ATP upregulation of theNa+/Ca2+ exchanger is different in mammalianheart and squid nerves.

  相似文献   

16.
ATP is proposed to be a major inhibitory neurotransmitter in the gastrointestinal (GI) tract, causing hyperpolarization and smooth muscle relaxation. ATP activates small-conductance Ca2+-activated K+ channels that are involved in setting the resting membrane potential and causing inhibitory junction potentials. No reports are available examining the effects of ATP on voltage-dependent inward currents in GI smooth muscle cells. We previously reported two types of voltage-dependent inward currents in murine proximal colonic myocytes: a low-threshold voltage-activated, nonselective cation current (IVNSCC) and a relatively high-threshold voltage-activated (L-type) Ca2+ current (IL). Here we have investigated the effects of ATP on these currents. External application of ATP (1 mM) did not affect IVNSCC or IL in dialyzed cells. ATP (1 mM) increased IVNSCC and decreased IL in the perforated whole-cell configuration. UTP and UDP (1 mM) were more potent than ATP on IVNSCC. ADP decreased IL but had no effect on IVNSCC. The order of effectiveness was UTP = UDP > ATP > ADP. These effects were not blocked by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS), but the phospholipase C inhibitor U-73122 reversed the effects of ATP on IVNSCC. ATP stimulation of IVNSCC was also reversed by protein kinase C (PKC) inhibitors chelerythrine chloride or bisindolylmaleimide I. Phorbol 12,13-dibutyrate mimicked the effects of ATP. RT-PCR showed that P2Y4 is expressed by murine colonic myocytes, and this receptor is relatively insensitive to PPADS. Our data suggest that ATP activates IVNSCC and depresses IL via binding of P2Y4 receptors and stimulation of the phospholipase C/PKC pathway. inhibitory junction potentials; smooth muscle; enteric nervous system  相似文献   

17.
The effects ofmaitotoxin (MTX) on plasmalemma permeability are similar to thosecaused by stimulation of P2Z/P2X7ionotropic receptors, suggesting that1) MTX directly activatesP2Z/P2X7 receptors or2) MTX andP2Z/P2X7 receptor stimulationactivate a common cytolytic pore. To distinguish between these twopossibilities, the effect of MTX was examined in1) THP-1 monocytic cells before andafter treatment with lipopolysaccharide and interferon-, a maneuverknown to upregulate P2Z/P2X7receptor, 2) wild-type HEK cells andHEK cells stably expressing theP2Z/P2X7 receptor, and3) BW5147.3 lymphoma cells, a cellline that expresses functional P2Z/P2X7 channels that are poorlylinked to pore formation. In control THP-1 monocytes, addition of MTXproduced a biphasic increase in the cytosolic freeCa2+ concentration([Ca2+]i);the initial increase reflects MTX-inducedCa2+ influx, whereas the secondphase correlates in time with the appearance of large pores and theuptake of ethidium. MTX produced comparable increases in[Ca2+]iand ethidium uptake in THP-1 monocytes overexpressing theP2Z/P2X7 receptor. In bothwild-type HEK and HEK cells stably expressing theP2Z/P2X7 receptor, MTX-inducedincreases in[Ca2+]iand ethidium uptake were virtually identical. The response of BW5147.3cells to concentrations of MTX that produced large increases in[Ca2+]ihad no effect on ethidium uptake. In both THP-1 and HEK cells, MTX- andBz-ATP-induced pores activate with similar kinetics and exhibit similarsize exclusion. Last, MTX-induced pore formation, but not channelactivation, is greatly attenuated by reducing the temperature to22°C, a characteristic shared by theP2Z/P2X7-induced pore. Together,the results demonstrate that, although MTX activates channels that aredistinct from those activated byP2Z/P2X7 receptor stimulation, thecytolytic/oncotic pores activated by MTX- and Bz-ATP are indistinguishable.

  相似文献   

18.
Adenosinestimulates Cl channels ofthe nonpigmented (NPE) cells of the ciliary epithelium. We sought toidentify the specific adenosine receptors mediating this action.Cl channel activity inimmortalized human (HCE) NPE cells was determined by monitoring cellvolume in isotonic suspensions with the cationic ionophore gramicidinpresent. The A3-selective agonistN6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide(IB-MECA) triggered shrinkage (apparentKd = 55 ± 10 nM). A3-selective antagonists blocked IB-MECA-triggered shrinkage, andA3-antagonists (MRS-1097, MRS-1191, and MRS-1523) also abolished shrinkage produced by 10 µMadenosine when all four known receptor subtypes are occupied. TheA1-selective agonistN6-cyclopentyladenosineexerted a small effect at 100 nM but not at higher or lowerconcentrations. The A2A agonistCGS-21680 triggered shrinkage only at high concentration (3 µM), aneffect blocked by MRS-1191. IB-MECA increased intracellularCa2+ in HCE cells and alsostimulated short-circuit current across rabbit ciliary epithelium.A3 message was detected in bothHCE cells and rabbit ciliary processes using RT-PCR. We conclude that human HCE cells and rabbit ciliary processes possessA3 receptors and that adenosinecan activate Cl channels inNPE cells by stimulating these A3 receptors.  相似文献   

19.
Activation of membrane P2X7 receptors by extracellular ATP [or its analog 2',3'-O-(4-benzoylbenzoyl)-ATP] results in the opening within several milliseconds of an integral ion channel that is permeable to small cations. If the ATP application is maintained for several seconds, two further sequelae occur: there is a gradual increase in permeability to the larger cation N-methyl-D-glucamine and the cationic propidium dye quinolinium, 4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(triethylammonio)propyl]diiodide (YO-PRO-1) enters the cell. The similarity in the time course of these two events has led to the widespread view that N-methyl-D-glucamine and YO-PRO-1 enter through a common permeation pathway, the "dilating" P2X7 receptor pore. Here we provide two independent lines of evidence against this view. We studied single human embryonic kidney cells expressing rat P2X7 receptors with patch-clamp recordings of membrane current and with fluorescence measurements of YO-PRO-1 uptake. First, we found that maintained application of the ATP analog did not cause any increase in N-methyl-D-glucamine permeability when the extracellular solution contained its normal sodium concentration, although YO-PRO-1 uptake was readily observed. Second, we deleted a cysteine-rich 18-amino acid segment in the intracellular juxtamembrane region of the P2X7 receptor. This mutated receptor showed normal YO-PRO-1 uptake but had no permeability to N-methyl-D-glucamine. Together, the clear differential effects of extracellular sodium ions or of mutation of the receptor strongly suggest that N-methyl-D-glucamine and YO-PRO-1 do not enter the cell by the same permeation pathway. ATP; cation channel; permeability; quinolinium, 4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(triethylammonio)propyl]diiodide  相似文献   

20.
The hypothesisof this investigation was that insulin and muscle contraction, byincreasing the rate of skeletal muscle glucose transport, would biascontrol so that glucose delivery to the sarcolemma (and t tubule) andphosphorylation of glucose intracellularly would exert more influenceover glucose uptake. Because of the substantial increases in blood flow(and hence glucose delivery) that accompany exercise, we predicted thatglucose phosphorylation would become more rate determining duringexercise. The transsarcolemmal glucose gradient (TSGG; the glucoseconcentration difference across the membrane) is inversely related tothe degree to which glucose transport determines the rate of glucoseuptake. The TSGG was determined by using isotopic methods in consciousrats during euglycemic hyperinsulinemia [Ins; 20 mU/(kg · min); n = 7], during treadmill exercise (Ex,n = 6), and in sedentary,saline-infused rats (Bas, n = 13).Rats received primed, constant intravenous infusions of trace3-O-[3H]methyl-D-glucoseand [U-14C]mannitol.Then2-deoxy-[3H]glucosewas infused for the calculation of a glucose metabolic index(Rg). At the end of experiments,rats were anesthetized, and soleus muscles were excised. Total soleusglucose concentration and the steady-state ratio of intracellular toextracellular3-O-[3H]methyl-D-glucose(which distributes on the basis of the TSGG) were used to calculateranges of possible glucose concentrations ([G]) at theinner and outer sarcolemmal surfaces([G]im and[G]om, respectively).Soleus Rg was increased in Ins andfurther increased in Ex. In Ins, total soleus glucose,[G]om, and the TSGGwere decreased compared with Bas, while[G]im remained near 0. In Ex, total soleus glucose and[G]im were increasedcompared with Bas, and there was not a decrease in[G]om as was observedin Ins. In addition, accumulation of intracellular free2-deoxy-[3H]glucoseoccurred in soleus in both Ex and Ins. Taken together, these dataindicate that, in Ex, glucose phosphorylation becomes an importantlimitation to soleus glucose uptake. In Ins, both glucose delivery andglucose phosphorylation influence the rate of soleus glucose uptakemore than under basal conditions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号