首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Taniguchi K  Hozumi S  Maeda R  Okumura T  Matsuno K 《Fly》2007,1(5):287-290
Although bilateral animals, including Drosophila, appear to have left-right (LR) symmetry from the outside, their internal organs often show directional and stereotypical LR asymmetry. The mechanisms by which the LR axis is established in Drosophila have not been studied well. We showed that two type I Myosin proteins play crucial roles in the manifestation of Drosophila handedness. Mutants of Myosin31DF (Myo31DF), which encodes a type ID Myosin, showed reversed laterality of the embryonic and adult gut and testis. Myo31DF was required in the epithelial cells of the embryonic hindgut, where its protein co-localized with actin filaments, for the correct handedness of this organ. Disorganization of the actin cytoskeleton in the hindgut epithelium caused LR defects of the embryonic hindgut. These results suggest that the actin-based Myo31DF function is required for proper handedness. In contrast, the disruption of microtubules in the hindgut epithelium did not affect the laterality of this organ. We also found that the overexpression of Myosin61F (Myo61F), which encodes another type I Myosin in the hindgut epithelium reversed the hindgut handedness, suggesting that these two type I Myosins--Myo31DF and Myo61F--have antagonistic functions. We propose that the actin-based functions of type I Myosins play critical roles in generating LR asymmetry in invertebrates.  相似文献   

2.
《Fly》2013,7(5):287-290
Although bilateral animals, including Drosophila, appear to have left-right (LR) symmetry from the outside, their internal organs often show directional and stereotypical LR asymmetry. The mechanisms by which the LR axis is established in Drosophila have not been studied well. We showed that two type I Myosin proteins play crucial roles in the manifestation of Drosophila handedness. Mutants of Myosin31DF (Myo31DF), which encodes a type ID Myosin, showed reversed laterality of the embryonic and adult gut and testis. Myo31DF was required in the epithelial cells of the embryonic hindgut, where its protein co-localized with actin filaments, for the correct handedness of this organ. Disorganization of the actin cytoskeleton in the hindgut epithelium caused LR defects of the embryonic hindgut. These results suggest that the actin-based Myo31DF function is required for proper handedness. In contrast, the disruption of microtubules in the hindgut epithelium did not affect the laterality of this organ. We also found that the overexpression of Myosin61F (Myo61F), which encodes another type I Myosin, in the hindgut epithelium reversed the hindgut handedness, suggesting that these two type I Myosins, Myo31DF and Myo61F, have antagonistic functions. We propose that the actin-based functions of type I Myosins play critical roles in generating LR asymmetry in invertebrates.  相似文献   

3.
While left-right (LR) asymmetric morphogenesis is common to various animal species, there have been no systematic studies of the LR asymmetry of body structures of Drosophila melanogaster. In the present paper the LR asymmetric development of the Drosophila gut is described, in which three major parts, the foregut, midgut and hindgut, show almost invariant LR asymmetry. The asymmetry is generated by a twist of each part in particular orientations, resulting in a left-handed (sinistral) convolution as a whole. The frequency of spontaneous reversal of LR orientations is very low (< 0.6%) and reversal of each part of the gut occurs independently. The bicoid mutation causes duplication of the posterior half of the gut, essentially keeping the left-handed twist, suggesting that the LR asymmetry may depend on some intrinsic nature of the cells or tissues rather than a graded distribution of morphogens in the egg. The handedness of particular gut parts was randomized or became symmetric in mutants of brachyenteron, huckebein and patched, suggesting that different gene pathways can interfere in determining LR asymmetry of the gut. It is noteworthy that all of these genes are expressed LR symmetrically.  相似文献   

4.
Many animals develop left-right (LR) asymmetry in their internal organs. The mechanisms of LR asymmetric development are evolutionarily divergent, and are poorly understood in invertebrates. Therefore, we studied the genetic pathway of LR asymmetric development in Drosophila. Drosophila has several organs that show directional and stereotypic LR asymmetry, including the embryonic gut, which is the first organ to develop LR asymmetry during Drosophila development. In this study, we found that genes encoding components of the Wnt-signaling pathway are required for LR asymmetric development of the anterior part of the embryonic midgut (AMG). frizzled 2 (fz2) and Wnt4, which encode a receptor and ligand of Wnt signaling, respectively, were required for the LR asymmetric development of the AMG. arrow (arr), an ortholog of the mammalian gene encoding low-density lipoprotein receptor-related protein 5/6, which is a co-receptor of the Wnt-signaling pathway, was also essential for LR asymmetric development of the AMG. These results are the first demonstration that Wnt signaling contributes to LR asymmetric development in invertebrates, as it does in vertebrates. The AMG consists of visceral muscle and an epithelial tube. Our genetic analyses revealed that Wnt signaling in the visceral muscle but not the epithelium of the midgut is required for the AMG to develop its normal laterality. Furthermore, fz2 and Wnt4 were expressed in the visceral muscles of the midgut. Consistent with these results, we observed that the LR asymmetric rearrangement of the visceral muscle cells, the first visible asymmetry of the developing AMG, did not occur in embryos lacking Wnt4 expression. Our results also suggest that canonical Wnt/β-catenin signaling, but not non-canonical Wnt signaling, is responsible for the LR asymmetric development of the AMG. Canonical Wnt/β-catenin signaling is reported to have important roles in LR asymmetric development in zebrafish. Thus, the contribution of canonical Wnt/β-catenin signaling to LR asymmetric development may be an evolutionarily conserved feature between vertebrates and invertebrates.  相似文献   

5.
6.
Lateral root (LR) formation is important for the establishment of root architecture in higher plants. Recent studies have revealed that LR formation is regulated by an auxin signaling pathway that depends on auxin response factors ARF7 and ARF19, and auxin/indole‐3‐acetic acid (Aux/IAA) proteins including SOLITARY‐ROOT (SLR)/IAA14. To understand the molecular mechanisms of LR formation, we isolated a recessive mutant rlf (reduced lateral root formation) in Arabidopsis thaliana. The rlf‐1 mutant showed reduction of not only emerged LRs but also LR primordia. Analyses using cell‐cycle markers indicated that the rlf‐1 mutation inhibits the first pericycle cell divisions involved in LR initiation. The rlf‐1 mutation did not affect auxin‐induced root growth inhibition but did affect LR formation over a wide range of auxin concentrations. However, the rlf‐1 mutation had almost no effect on auxin‐inducible expression of LATERAL ORGAN BOUNDARIES‐DOMAIN16/ASYMMETRIC LEAVES2‐LIKE18 (LBD16/ASL18) and LBD29/ASL16 genes, which are downstream targets of ARF7/19 for LR formation. These results indicate that ARF7/19‐mediated auxin signaling is not blocked by the rlf‐1 mutation. We found that the RLF gene encodes At5g09680, a protein with a cytochrome b5‐like heme/steroid binding domain. RLF is ubiquitously expressed in almost all organs, and the protein localizes in the cytosol. These results, together with analysis of the genetic interaction between the rlf‐1 and arf7/19 mutations, indicate that RLF is a cytosolic protein that positively controls the early cell divisions involved in LR initiation, independent of ARF7/19‐mediated auxin signaling.  相似文献   

7.
The development of handedness in left/right asymmetry   总被引:10,自引:0,他引:10  
The development of handed asymmetry requires a special mechanism for consistently specifying a difference between left and right sides. This is to be distinguished from both random asymmetry, and from those left/right differences that are mirror symmetrical. We propose a model for the development of handedness in bilateral animals, comprising three components. (i) A process termed conversion, in which a molecular handedness is converted into handedness at the cellular level. A specific model for this process is put forward, based on cell polarity and transport of cellular constituents by a handed molecule. (ii) A mechanism for random generation of asymmetry, which could involve a reaction-diffusion process, so that the concentration of a molecule is higher on one side than the other. The handedness generated by conversion could consistently bias this mechanism to one side. (iii) A tissue-specific interpretation process which responds to the difference between the two sides, and results in the development of different structures on the left and right. There could be direct genetic control of the direction of handedness in this model, most probably through the conversion process. Experimental evidence for the model is considered, particularly the iv mutation in the mouse, which appears to result in loss-of-function in biasing, and so asymmetry is random. The model can explain the abnormal development of handedness observed in bisected embryos of some mammalian, amphibian and sub-vertebrate species. Spiral asymmetry, as seen in spiral cleavage and in ciliates, involves only conversion of molecular asymmetry to the cellular and multicellular level, with no separate interpretation step.  相似文献   

8.
Humans display structural and functional asymmetries in brain organization, strikingly with respect to language and handedness. The molecular basis of these asymmetries is unknown. We report a genome-wide association study meta-analysis for a quantitative measure of relative hand skill in individuals with dyslexia [reading disability (RD)] (n = 728). The most strongly associated variant, rs7182874 (P = 8.68×10−9), is located in PCSK6, further supporting an association we previously reported. We also confirmed the specificity of this association in individuals with RD; the same locus was not associated with relative hand skill in a general population cohort (n = 2,666). As PCSK6 is known to regulate NODAL in the development of left/right (LR) asymmetry in mice, we developed a novel approach to GWAS pathway analysis, using gene-set enrichment to test for an over-representation of highly associated variants within the orthologs of genes whose disruption in mice yields LR asymmetry phenotypes. Four out of 15 LR asymmetry phenotypes showed an over-representation (FDR≤5%). We replicated three of these phenotypes; situs inversus, heterotaxia, and double outlet right ventricle, in the general population cohort (FDR≤5%). Our findings lead us to propose that handedness is a polygenic trait controlled in part by the molecular mechanisms that establish LR body asymmetry early in development.  相似文献   

9.
10.
In Caenorhabditis elegans, the MEI-1–katanin microtubule-severing complex is required for meiosis, but must be down-regulated during the transition to embryogenesis to prevent defects in mitosis. A cullin-dependent degradation pathway for MEI-1 protein has been well documented. In this paper, we report that translational repression may also play a role in MEI-1 down-regulation. Reduction of spn-2 function results in spindle orientation defects due to ectopic MEI-1 expression during embryonic mitosis. MEL-26, which is both required for MEI-1 degradation and is itself a target of the cullin degradation pathway, is present at normal levels in spn-2 mutant embryos, suggesting that the degradation pathway is functional. Cloning of spn-2 reveals that it encodes an eIF4E-binding protein that localizes to the cytoplasm and to ribonucleoprotein particles called P granules. SPN-2 binds to the RNA-binding protein OMA-1, which in turn binds to the mei-1 3′ untranslated region. Thus, our results suggest that SPN-2 functions as an eIF4E-binding protein to negatively regulate translation of mei-1.  相似文献   

11.
Vertebrate body plans have a conserved left-right (LR) asymmetry manifested in the position and anatomy of the heart, visceral organs, and brain. Recent studies have suggested that LR asymmetry is established by asymmetric Ca2+ signaling resulting from cilia-driven flow of extracellular fluid across the node. We report here that inositol 1,3,4,5,6-pentakisphosphate 2-kinase (Ipk1), which generates inositol hexakisphosphate, is critical for normal LR axis determination in zebrafish. Zebrafish embryos express ipk1 symmetrically during gastrulation and early segmentation. ipk1 knockdown by antisense morpholino oligonucleotide injection randomized LR-specific gene expression and organ placement, effects that were associated with reduced intracellular Ca2+ flux in cells surrounding the ciliated Kupffer's vesicle, a structure analogous to the mouse node. Our data suggest that the pathway for inositol hexakisphosphate production is a key regulator of asymmetric Ca(2+) flux during LR specification.  相似文献   

12.
13.
14.
15.
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.  相似文献   

16.
17.
Animals often show left–right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbl’s role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity.  相似文献   

18.
The internal left‐right (LR) asymmetry is a characteristic that exists throughout the animal kingdom from roundworms over flies and fish to mammals. Cilia, which are antenna‐like structures protruding into the extracellular space, are involved in establishing LR asymmetry during early development. Humans who suffer from dysfunctional cilia often develop conditions such as heterotaxy, where internal organs appear to be placed randomly. As a consequence to this failure in asymmetry development, serious complications such as congenital heart defects (CHD) occur. The mammalian (or mechanistic) target of rapamycin (mTOR) pathway has recently emerged as an important regulator regarding symmetry breaking. The mTOR pathway governs fundamental processes such as protein translation or metabolism. Its activity can be transduced by two complexes, which are called TORC1 and TORC2, respectively. So far, only TORC1 has been implicated with asymmetry development and appears to require very precise regulation. A number of recent papers provided evidence that dysregulated TORC1 results in alterations of motile cilia and asymmetry defects. In here, we give an update on what we know so far of mTORC1 in LR asymmetry development.  相似文献   

19.
Although substantial progress has been made recently in understanding the establishment of left-right asymmetry in several organisms, little is known about the initial step for any embryo. In gastropods, left-right body handedness is determined by an unknown maternally inherited single gene or genes at closely linked loci and is associated with the sense of spiral cleavage in early embryos. Contrary to what has been believed, we show that temporal and spatial cytoskeletal dynamics for the left- and right-handed snails within a species are not mirror images of each other. Thus, during the third cleavage of Lymnaea stagnalis, helical spindle inclination (SI) and spiral blastomere deformation (SD) are observed only in the dominant dextral embryos at metaphase-anaphase, whereas in the recessive sinistral embryos, helicity emerges during the furrow ingression. Actin depolymerization agents altered both cleavages to neutral. Further, we found a strong genetic linkage between the handedness-specific cytoskeletal organization and the organismal handedness, using backcrossed F4 congenic animals that inherit only 1/16 of dextral strain-derived genome either with or without the dextrality-determining gene(s). Physa acuta, a sinistral-only gastropod, exhibits substantial SD and SI levotropically. Thus, cytoskeletal dynamics have a crucial role in determination of body handedness with further molecular, cellular, and evolutionary implications.  相似文献   

20.
C. elegans embryos, larvae, and adults exhibit several left-right asymmetries with an invariant dextral handedness, which first becomes evident in the embryo at the 6-cell stage. Reversed (sinistral) handedness was not observed among > 10,000 N2 adults reared at 16°C or 20°C under standard conditions. However, among the progeny of adults reproducing at 10°C, the frequency of animals with sinistral handedness was increased to ∼0.5%. Cold pulse experiments indicated that the critical period for this increase was in early oogenesis, several hours before the first appearance of left-right asymmetry in the embryo. Hermaphrodites reared at 10°C and mated with males reared at 20°C produced sinistral outcross as well as sinistral self-progeny, indicating that the low temperature effect on oocytes was sufficient to cause reversals. Increased frequency of reversal was also observed among animals developed from embryos lacking the egg shell. Possible mechanisms for the control of embryonic handedness are discussed in the context of these results, including the hypothesis that handedness could be dictated by the chirality of a gametic component. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号