首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Structural Polypeptides of Simian Virus 40   总被引:46,自引:39,他引:7       下载免费PDF全文
To determine the number and molecular weights of the structural polypeptides of simian virus 40, we have analyzed purified virus by electrophoresis on 14% polyacrylamide gels containing sodium dodecyl sulfate. Full virus purified by several different methods showed six distinct bands with molecular weights of approximately 43,000 (VP1, containing 70% of virion protein), 32,000 (VP2, 9%), 23,000 (VP3, 10%), 14,000 (VP4, 6%), 12,500 (VP5, 4%), and 11,000 (VP6, 3%) both by analysis of radioactively labeled virions and by visualization of the polypeptide bands after staining. “Empty” virions contain decreased amounts of VP4, 5, and 6. The approximate molecular ratios of the polypeptides were 6.0, 1.0, 1.5, 1.5, 1.1, and 1.0. When virus degraded in an alkaline buffer was analyzed by velocity centrifugation in sucrose gradients, the two larger polypeptides (VP1 and VP2) remained at the top of the gradient, whereas the three smallest polypeptides (VP4, 5, and 6) sedimented as a complex with the viral deoxyribonucleic acid. VP3 was found in association with either VP1 and 2 or VP4, 5, and 6, depending on the conditions of degradation. Presumably, VP1 and VP2, comprising about 80% of the protein, form the capsid of the virus. VP4, 5, and 6 may form a nucleoprotein in the virion, and VP3 may serve as an intermediate structural component.  相似文献   

2.
Polyacrylamide gel electrophoresis of purified Junin virus revealed six distinct structural polypeptides, two major and four minor ones. Four of these polypeptides appeared to be covalently linked with carbohydrate. The molecular weights of the six proteins, estimated by coelectrophoresis with marker proteins, ranged from 25,000 to 91,000. One of the two major components (number 3) was identified as a nucleoprotein and had a molecular weight of 64,000. It was the most prominent protein and was nonglycosylated. The other major protein (number 5), with a molecular weight of 38,000, was a glucoprotein and a component of the viral envelope. The location on the virion of three additional glycopeptides with molecular weights of 91,000, 72,000, and 52,000, together with a protein with a molecular weight of 25,000, was not well defined.  相似文献   

3.
Polypeptide 4a, a major vaccinia structural polypeptide which was previously shown to form from a high-molecular-weight precursor is made after the period of viral deoxyribonucleic acid (DNA) synthesis. Pulse-chase experiments demonstrated that a period of 1 to 2 hr is required for a 50% conversion of precursor to product. The rates of incorporation of polypeptides into virus particles were examined. The kinetics of incorporation of labeled 4a and other major structural polypeptides into virus particles were similar, despite the additional time required for the formation of 4a from its precursor. Furthermore, 4a was present exclusively in a particulate form at all times examined. Both observations suggested that cleavage of the precursor occurs after, or immediately prior to, association with developing virus particles. Polypeptide P4a was previously identified as the probable precursor of 4a and is not ordinarily found in detectable amounts in virus particles. Under conditions in which breakdown of P4a was inhibited by adding rifampin or amino acid analogues after the period of viral DNA synthesis, isolated virus particles contained significant amounts of this polypeptide. Further analysis showed that P4a was localized within the virus core, which is also the site of 4a. Synchronization of virus assembly after the removal of rifampin was shown to be useful for studying the integration of polypeptides into a particulate fraction of the cytoplasm.  相似文献   

4.
Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the viral polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.  相似文献   

5.
The membranes isolated from type 2 dengue virus-infected BHK-21/15 cells contain three glycosylated virus-specified proteins; one corresponds to the virion envelope glycoprotein, V-3, whereas the other two are nonstructural virus-specified proteins, NV-2 and NV-3. A combination of two nonionic detergents, Nonidet P-40 and Triton X-305, solubilized greater than or equal to 80% of the membrane-bound protein and the majority of the type 2 dengue virus complement-fixing antigens. The soluble material was adsorbed by concanavalin A-Sepharose in the presence of the nonionic detergents, which were subsequently removed by washing with deoxycholate-containing buffer. Finally, the bound glycoprotein was eluted by the addition of alpha-methyl glucopyranoside. V-3 was the only virus-specified protein in the alpha-methyl glucopyranoside eluate. The V-3-containing fraction did not cross-react with antisera against other selected Flaviviruses in the complement fixation tests. The V-3 contained in the isolated fraction differed from the parent membrane-bound V-3 in two interesting, and as yet unexplained, ways: (i) it exhibited hemagglutinating activity similar to that of the infectious virus, but (ii) it did not block the action of neutralizing antibody.  相似文献   

6.
The difference in membrane (M) protein compositions between the transmissible gastroenteritis coronavirus (TGEV) virion and the core has been studied. The TGEV M protein adopts two topologies in the virus envelope, a Nexo-Cendo topology (with the amino terminus exposed to the virus surface and the carboxy terminus inside the virus particle) and a Nexo-Cexo topology (with both the amino and carboxy termini exposed to the virion surface). The existence of a population of M molecules adopting a Nexo-Cexo topology in the virion envelope was demonstrated by (i) immunopurification of (35)S-labeled TGEV virions using monoclonal antibodies (MAbs) specific for the M protein carboxy terminus (this immunopurification was inhibited only by deletion mutant M proteins that maintained an intact carboxy terminus), (ii) direct binding of M-specific MAbs to the virus surface, and (iii) mass spectrometry analysis of peptides released from trypsin-treated virions. Two-thirds of the total number of M protein molecules found in the virion were associated with the cores, and one-third was lost during core purification. MAbs specific for the M protein carboxy terminus were bound to native virions through the M protein in a Nexo-Cexo conformation, and these molecules were removed when the virus envelope was disrupted with NP-40 during virus core purification. All of the M protein was susceptible to N-glycosidase F treatment of the native virions, which indicates that all the M protein molecules are exposed to the virus surface. Cores purified from glycosidase-treated virions included M protein molecules that completely or partially lost the carbohydrate moiety, which strongly suggests that the M protein found in the cores was also exposed in the virus envelope and was not present exclusively in the virus interior. A TGEV virion structure integrating all the data is proposed. According to this working model, the TGEV virion consists of an internal core, made of the nucleocapsid and the carboxy terminus of the M protein, and the envelope, containing the spike (S) protein, the envelope (E) protein, and the M protein in two conformations. The two-thirds of the molecules that are in a Nexo-Cendo conformation (with their carboxy termini embedded within the virus core) interact with the internal core, and the remaining third of the molecules, whose carboxy termini are in a Nexo-Cexo conformation, are lost during virus core purification.  相似文献   

7.
Deproteinization effect of nonionic detergent NP-40 on orthomyxoviruses and paramyxoviruses depends on the ionic strength and pH of the medium. Solubilization of the M1 protein is considerably more efficient at pH 6.0-5.0 than at pH 6.5-9.0 for influenza types A, B, C viruses. In contrast, the extraction of matrix protein M from the virions of paramyxoviruses is increased at pH about 9.0. The phenomenon of pH-dependent solubilization of the virions matrix protein is analyzed in connection with the mechanisms of viral invasion of the target cell. Polypeptide M1 is found to be more tightly bound with the nucleocapside of influenza virus with the cleaved hemagglutinine HA1/2 than with the nucleocapside of the virus with the intact HA0.  相似文献   

8.
The murine leukemia virus envelope proteins, p15(E) and gp70, exhibit a mode of processing distinct from that of virion core proteins according to three criteria. First, the incorporation of both p15(E) and gp70 into virions is more sensitive to the metabolic analogue 2-deoxy-D-glucose than the incorporation of core proteins. Second, the kinetics with which the newly synthesized envelope proteins appear in the released virions is delayed relative to the appearance of core proteins. Third, immunoprecipitation of large polypeptides from infected cells reveals the presence of gp70 and p15(E) in a common precursor distinct from the core polyprotein.  相似文献   

9.
Molecular composition of the adenovirus type 2 virion   总被引:30,自引:16,他引:14       下载免费PDF全文
The representation of the different structural polypeptides within the adenovirus virion has been accurately determined, and the particle molecular weight has been derived. A stoichiometric analysis was performed with [35S]methionine as a radiolabel, and analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate the polypeptides. The recently available sequence of the adenovirus type 2 genome was used to determine the number of methionines in each polypeptide. The resulting relative representation was placed on an absolute scale by using the known number of hexon polypeptides per virion. The analysis provides new information on the composition of the vertex region, which has been the subject of some controversy. Penton base was found to be present in 60 copies, distributed as pentamers at each of the 12 vertices. Three fiber monomers were associated with one penton base to form the penton complex. Polypeptide IX was present in 240 copies per virion and 12 copies per group-of-nine hexons, supporting a model proposed earlier for the distribution of this protein. The location of polypeptide IX explains the dissociation of the virus outer capsid into groups-of-nine hexons. The penton base was microheterogeneous, and the relative amounts suggest that the symmetry mismatch, which occurs within the penton complex between base and fiber, is resolved by the synthesis of penton base polypeptides from two closely spaced start codons.  相似文献   

10.
Stable association of viral protein VP1 with simian virus 40 DNA.   总被引:5,自引:4,他引:1       下载免费PDF全文
Mild dissociation of simian virus 40 particles releases a 110S virion core nucleoprotein complex containing histones and the three viral proteins VP1, VP2, and VP3. The association of viral protein VP1 within this nucleoprotein complex is mediated at least partially through a strong interaction with the viral DNA. Treatment of the virion-derived 110S nucleoprotein complex with 0.25% Sarkosyl dissociated VP2, VP3, and histones, leaving a stable VP1-DNA complex. The VP1-DNA complex had a sedimentation value of 30S and a density of 1.460 g/cm3. The calculated molecular weight of the complex was 7.9 x 10(6), with an average of 100 VP1 molecules per DNA. Agarose gel electrophoresis of the VP1-DNA complex demonstrated that VP1 is associated not only with form I and form II simian virus 40 DNAs but also with form III simian virus 40 DNA generated by cleavage with EcoRI.  相似文献   

11.
Phosphorylation of Simian Virus 40 Proteins in a Cell-Free System   总被引:8,自引:8,他引:0       下载免费PDF全文
We have shown previously that all the structural proteins of simian virus 40 (SV40) are phosphoproteins. Virus phosphorylated in vivo could be further phosphorylated with exogenous cellular protein kinases in a cell-free system containing gamma-(32)P-ATP as phosphate donor. In intact infectious virus only polypeptides 1 and 2 (mol wt 49,000 and 40,800, respectively) were further phosphorylated in vitro. However, when infectious SV40 was partially disrupted, treated with nucleases, and then phosphorylated in vitro, all five structural polypeptides accepted additional phosphate groups. Similarly, all polypeptides of intact empty capsids, derived from infected cells, were further phosphorylated in vitro. Phosphorylation of empty capsids and infectious SV40 in vitro was enhanced from 4- to 11-fold after prior treatment of virus with alkali. The phosphate group was linked only to serine residues of the viral polypeptides phosphorylated both in vitro and in vivo.  相似文献   

12.
A preparative method for isolating pure viral envelopes from a type-C RNA tumor virus, Rauscher murine leukemia virus, is described. Fractionation of virions of Rauscher murine leukemia virus was studied after disruption of the virions with the detergents sodium dodecyl sulfate of Nonidet P-40 in combination with ether. Fractionation was performed through flotation in a discontinuous sucrose gradient and, as appeared from electron microscopic examination, a pure viral envelope fraction was obtained in this way. By use of sensitive competition radioimmunoassays or sodium dodecyl sulfate-polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera directed against Rauscher murine leukemia virus proteins, the amount of the gag and env gene-encoded structural polypeptides in the virions and the isolated envelope fraction was compared. The predominant viral structural polypeptides in the purified envelope fraction were the env gene-encoded polypeptides gp70, p15(E), and p12(E), whereas, except for p15, there was only a relatively small amount of the gag gene-encoded structural polypeptides in this fraction.  相似文献   

13.
Location of the Glycoprotein in the Membrane of Sindbis Virus   总被引:26,自引:0,他引:26  
SINDBIS virus, which is transmitted by arthropods, consists of a nucleoprotein core within a lipid-containing envelope. Its components assemble at a cellular membrane and virus particles form by an outfolding of this membrane. Thus, such viruses provide useful systems for studies of the structure and synthesis of membranes. The Sindbis virus particle contains only two proteins, one associated with the viral envelope and the other with the viral RNA in the core, or nucleocapsid1. The protein associated with the membrane is a glycoprotein, whereas the core protein contains no carbohydrate2. The exact location of the glycoprotein within the viral envelope has not been determined, nor has information been obtained about the function of the carbohydrate in the virion. The results described here indicate that the spikes which cover the surface of the virion are glycoprotein in nature.  相似文献   

14.
Several major human pathogens, including the filoviruses, paramyxoviruses, and rhabdoviruses, package their single-stranded RNA genomes within helical nucleocapsids, which bud through the plasma membrane of the infected cell to release enveloped virions. The virions are often heterogeneous in shape, which makes it difficult to study their structure and assembly mechanisms. We have applied cryo-electron tomography and sub-tomogram averaging methods to derive structures of Marburg virus, a highly pathogenic filovirus, both after release and during assembly within infected cells. The data demonstrate the potential of cryo-electron tomography methods to derive detailed structural information for intermediate steps in biological pathways within intact cells. We describe the location and arrangement of the viral proteins within the virion. We show that the N-terminal domain of the nucleoprotein contains the minimal assembly determinants for a helical nucleocapsid with variable number of proteins per turn. Lobes protruding from alternate interfaces between each nucleoprotein are formed by the C-terminal domain of the nucleoprotein, together with viral proteins VP24 and VP35. Each nucleoprotein packages six RNA bases. The nucleocapsid interacts in an unusual, flexible "Velcro-like" manner with the viral matrix protein VP40. Determination of the structures of assembly intermediates showed that the nucleocapsid has a defined orientation during transport and budding. Together the data show striking architectural homology between the nucleocapsid helix of rhabdoviruses and filoviruses, but unexpected, fundamental differences in the mechanisms by which the nucleocapsids are then assembled together with matrix proteins and initiate membrane envelopment to release infectious virions, suggesting that the viruses have evolved different solutions to these conserved assembly steps.  相似文献   

15.
Incorporation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into assembling particles is crucial for virion infectivity. Genetic and biochemical data indicate that the matrix (MA) domain of Gag and the cytoplasmic tail of the transmembrane glycoprotein gp41 play an important role in coordinating Env incorporation; however, the molecular mechanism and possible role of host factors in this process remain to be defined. Recent studies suggested that Env incorporation is mediated by interactions between matrix and tail-interacting protein of 47 kDa (TIP47; also known as perilipin-3 and mannose-6-phosphate receptor-binding protein 1), a member of the perilipin, adipophilin, TIP47 (PAT) family of proteins implicated in protein sorting and lipid droplet biogenesis. We have confirmed by nuclear magnetic resonance spectroscopy titration experiments and surface plasmon resonance that MA binds TIP47. We also reevaluated the role of TIP47 in HIV-1 Env incorporation in HeLa cells and in the Jurkat T-cell line. In HeLa cells, TIP47 overexpression or RNA interference (RNAi)-mediated depletion had no significant effect on HIV-1 Env incorporation, virus release, or particle infectivity. Similarly, depletion of TIP47 in Jurkat cells did not impair HIV-1 Env incorporation, virus release, infectivity, or replication. Our results thus do not support a role for TIP47 in HIV-1 Env incorporation or virion infectivity.  相似文献   

16.
Meckes DG  Wills JW 《Journal of virology》2008,82(21):10429-10435
We have made the surprising discovery that the interactions of herpes simplex virus with its initial cell attachment receptor induce a rapid and highly efficient structural change in the tegument, the region of the virion situated between the membrane and the capsid. It has been known for nearly a decade that viruses can trigger host signaling pathways when they bind to receptors on the cell surface; however, until now there has been no evidence that a signal can be sent in reverse--from the "outside in"--across a viral membrane. Evidence for this signaling event was found during studies of UL16, a tegument protein that is conserved among all the herpesviruses. Previous work has demonstrated that UL16 is bound to capsids isolated from the cytoplasm of infected cells, but this interaction is destabilized during subsequent egress steps, leading to release of the extracellular virion. Pretreatment with N-ethylmaleimide, a small, membrane-permeating compound that covalently modifies free cysteines, restabilizes the interaction, thereby permitting the capsid-UL16 complex to be isolated following disruption of virions with NP-40. In the experiments described here, we found that the natural signal for release of UL16 from capsids is sent when virions merely bind to cells at 4 degrees C. The internal change was also observed upon binding to immobilized heparin in a manner that requires viral glycoprotein C. This represents the first example of signaling across a viral envelope following receptor binding.  相似文献   

17.
The modification patterns of histones present in various forms of intracellular simian virus 40 nucleoprotein complexes were analyzed by acetic acid-urea-polyacrylamide gel electrophoresis. The results showed that different viral nucleoprotein complexes contain different histone patterns. Simian virus 40 chromatin, which contains the activities for the synthesis of viral RNA and DNA, exhibits a histone modification pattern similar to that of the host chromatin. However, virion assembly intermediates and mature virions contain highly modified histones. Pulse-chase experiments with [3H]lysine showed that the newly incorporated histones in the virion assembly intermediates were already highly modified. The majority of in vivo acetylation activity of histones occurred on the 70S simian virus 40 chromatin as analyzed by pulse-labeling with [3H]acetate. These results and our previous analysis of the virion assembly pathway suggest that three stages are involved in the packaging of simian virus 40 chromatin into the mature virion: (i) modification of histones, (ii) accumulation of capsid protein around the chromatin with highly modified histones, and (iii) organization of capsid proteins into salt-resistant shells. The role of histone modification in virion assembly is discussed.  相似文献   

18.
19.
Simian virus (SV40) nucleoprotein complexes containing circular supercoiled viral DNA were extracted from infected cells and purified by differential centrifugation. The protein content of these complexes was compared by electrophoresis on 15% acrylamide gels with the protein content of purified SV40 virions and with histones from virus-infected cells. The electrophoretic patterns of histones from each of the sources revealed several major differences. SV40 virions contained histones H3, H2B, H2A, and H4 but not H1. Nucleoprotein complexes and host cells contained all five major histone groups. Relative to cellular histones, virion and nucleoprotein complex histones were enriched 15 to 40% in histones H3 and H4. In addition to the major classes of histones, several subfractions of histones H1, H3, and H4 were observed in acrylamide gels of proteins from SV40 virions and viral nucleoprotein complexes. Acetate labeling experiments indicated that each subfraction of histones H3 and H4 had a different level of acetylation. The histones from SV40 virions and nucleoprotein complexes were acetylated to significantly higher levels than those of infected host cells. No apparent differences in phosphorylation of the major histone groups were observed.  相似文献   

20.
三角帆蚌瘟病病毒的精细结构与基因组及多肽的研究   总被引:7,自引:0,他引:7  
邵健忠  沈志荣 《病毒学报》1993,9(2):160-166
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号