首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.
2.
M N Gruzova 《Ontogenez》1979,10(4):332-339
The fine structural organization of nuclei was studied in the growing oocytes of Blaps lethifera, B. mortisaga and Gnaptor spinimanus. In the beginning of diplotene the nuclei contain primary fibrillar nucleoli and numerous electron dense globules dispersed all over the nucleus; the loose chromosome material (lampbrush chromosomes) is distributed all over the nucleus. With the oocyte growth the chromosomes are spiralized and join into the karyosphere. A capsule of fibrous material forms around the karyosphere. The karyosphere nucleoli appear on the chromosomes and, then, move to the capsule region and outside its limits, to the nuclear envelope. They are fibrillar and non-active with respect to RNA synthesis. The fibrous material of the capsule is represented by strands which consist of bundles of cross-striated filaments. These latter contact directly with the chromosomes in the karyosphere and with the surface of the karyosphere nucleoli. The fibrillar-granular bodies are distributed along the strands in the capsule; they contain both RNA and DNA. The nature of extrachromosomal DNA in the karyosphere capsule and its participation in the formation of the capsule material are discussed. A suggestion is put forward on the similarity of the capsule strands with the modified central elements of synaptinemal complex.  相似文献   

3.
The ultrastructural organization of the vitellogenic oocyte nucleus (stage VI, according to Duryee, 1950) was studied in normal and in vitro hormone-stimulated maturing oocytes of Rana temporaria. At this stage, numerous nucleoli are gathered around the knot of highly contracted chromosomes (the karyosphere) thus making the karyosphere capsule. Light microscope observations reveal three zones in the capsule: a central fibrous zone separating the chromosomes from the nucleoli, a middle zone, consisting of numerous nucleoli and a distinct fibrous componen; in addition a fibrous zone on the capsule periphery is seen. The nucleoli are fibrillar, bear no proribosomal granules and do not synthesize RNA. This period is characterized by an intensive fragmentation and segregation of the nucleolar material. Numerous micronucleoli and nuclear bodies occur in the nucleus. The nucleoli are normally compound and irregular in shape to become spherical in hormone-stimulated maturing oocytes. In the central fibrous zone of the capsule, separating the chromosomes from the nucleoli, some peculiar abundant accumulations of annuli were detected lacking the membranes component. Annuli are linked with the fibrous material and are regularily packed making peculiar pseudomembranes (PMM). The chromatin is connected with PMM directly. In the middle zone of the capsule, accumulations of PMM are also seen, though less abundant and less regularly packed; along with annuli, membranous areas of various size and form are met in PMM. PMM are connected with the micronucleoli with filaments 20 nm thick. In the peripheral zone of the capsule, a variety of membranous structures is detected: intranuclear annuli lamellae, component of the capsule consists of different membranous and pseudomembranous (with annuli) structures. A question of the contribution of the chromatin material in the formation of the fibrous capsular component (PMM and membranous structures) is discussed.  相似文献   

4.
M N Gruzova 《Tsitologiia》1975,17(3):219-237
The purpose of this review is to draw attention to the peculiar phenomenon during gametogenesis: the formation of the karyosphere. This phenomenon is characterized by concentration of all chromosomes in the limited area of the nucleus and may be considered as alternative of the genome in the state of lumpbrush chromosomes. The formation of the karyosphere is a widely spread phenomenon during oogenesis of different animal classes. The karyosphere can be developed during different stages of oogenesis in different organisms; but as a rule the chromosomes of diploten stage of meiosis take part in its formation. As to functional identity of the karyosphere in different species, special investigations are to be done, but contemporary knowledge of the karyosphere formation reveals some common feature:1) in the karyosphere the chromosomes are in a relatively spiral state as demonstrated by the positive Feulgen reaction; 2) there is a low level of RNA synthesis or the absence of it in the karyosphere; 3) during the karyosphere formation the nucleus is enriched by the acid proteins and a lot of protein granules and structures appearing in a close contact with the karysphere. The more typical examples of the karyosphere formation can be observed in the insect oocytes belonging to the nutrimentary type of oogenesis. In the oocytes of some animals the peculiar protein substances are formed around the chromosome knot and appear as a fibrillar zone. Such karyosphere appears to be a kind of capsule inside the nucleus. The capsules are developed as a result of complex interaction between the main nuclear structures; chromosomes, nucleoli, and nuclear membrane as it is manifested by the analysis of some recent ultrastructural date obtained in some insect and amphibian oocytes. The function of the karyosphere capsule and the role of the nuclear structure (sinaptonemal complex, extrachromosomal DNA, and nuclear membrane) in formation of the capsule, are discussed as well as the ultrastructural and cytochemical similarity between the karyosphere capsule of oocytes and nuclear bodies of somatic cells.  相似文献   

5.
The organization of the nucleus in the oocytes from human antral follicles was examined at the electron microscopic level. At this time all the chromosomes are aggregated around an inactivated nucleolus forming a karyosphere 5-7 micron in diameter. The nucleolus bears no granular component and consists of densely packed delicate fibrillar material. The peripheral zone resembling a ring 0.5 micron thick is separated in the nucleolus. Nucleolus-like bodies (NLB), consisting of granules 20 nm in diameter embedded in finely fibrillar material, are constantly observed in contact with the chromatin. The eventually formed karyosphere is a complex of intimately interconnecting structures--the nucleolus, chromosomes and NLB. However, the chromatin surrounding the nucleolus does not form a continuous (compact) mass as it is observed at the light microscopic level. It is determined that the human karyosphere is formed during the preovulatory period when the connection between oocyte and follicular cells of cumulus oophorus is lost. The duration of karyosphere existence in the human oocytes, and relation of the karyosphere to the processes of antral follicle atresia are discussed.  相似文献   

6.
Morphological peculiarities of the oocyte nuclear organization were examined in R. ridibunda during winter and spring (February-March). Numerous nucleoli were seen to be assembled around regressive lampbrush chromosomes in the centre of the nucleus, and a central body was formed to which the chromosomes were attached. As result, a structural complex is constituted that involves a karyosphere and a capsule. Nucleoli are characterized by segregation and intensive fragmentation of their material. In result, a considerable part of nucleolar DNA is eliminated in the form of ring and polymorphous structures (micronucleoli). Besides the membranous component of nucleoli (nucleolar threads or tails) is lost. Towards the end of this period, nucleoli with complicated morphology become spherical again. The formation of the central body is started from the appearance of some small optically-light protein structures 5-20 nm in diameter (central body precursors-CBP). CBP are closely surrounded with ring micronucleoli to make intimate contact with the chromosomes and nucleolar threads. CBP commonly lie in one region of the nucleus not far from each other. The formation of a definitive central body obviously occurs due to a fusion of some small CBP. A conclusion is made of the nucleolar origin of the ring and polymorphous structures and of their essential role in the central body formation. The participation of chromosomal and eliminated nucleolar DNA in this process is discussed.  相似文献   

7.
Fine structure of nucleoli in micronucleated cells   总被引:6,自引:0,他引:6  
The correlation between the number of nucleolus organizing regions (NOR) on metaphase chromosomes and the number of nucleoli was studied in normal and micronucleate cells. Many micronuclei, but not all, were able to form complete nucleoli with fibrillar and granular RNP components and fibrillar centers. Micronuclei which failed to form complete nucleoli often contained multiple electron-dense bodies of fibrillar material. These structures, which were much smaller than nucleoli, reacted with nucleolus-specific antibodies and the Ag-As method in the same way as complete nucleoli, but lacked fibrillar centers and granular RNP components. The data suggest that these nucleolus-like ‘blobs’ contain nucleolar material which, following mitosis, has been enclosed in micronuclei which do not contain nucleolus organizing chromosomes. No evidence was found for the activation of latent NORs not expressed in mononucleate cells.  相似文献   

8.
M N Gruzova 《Ontogenez》1974,5(6):623-633
The nuclear structures in the ovarioles have been studied in Laspeyresia pomonella by means of light and electron microscopy, autoradiography (RNA and DNA synthesis) and molecular hybridization in situ. The karyosphere was shown to form in oocyte nuclei at the beginning of oocyte growth. Numerous protein granules appeared in close contact with the karyosphere chromosomes; the true nucleolus was absent and the whole nucleus was inactive in RNA synthesis. A special attention was paid to studying nuclear structures in trophocytes. Numerous complex nucleoli actively synthesizing RNA formed in highly endopolyploid nuclei of trophocytes. Besides, each trophocyte had a spheroid vacuolized body of DNA which developed from one of meiotic bivalents soon after trophocyte differentiation and increased in diameter up to 10-15 mu. The DNA body in trophocytes and follicle cells was in close contact with the nucleolar material. Ribosomal DNA was present in these bodies as was shown by molecular hybridization in situ. A suggestion is put forward to the effect that the DNA bodies take part in the formation of complex nucleolar apparatus of trophocytes. On the basis of both the author's and literary data, a conclusion is drawn that DNA spheres in trophocytes and follicle cells are sex chromatin bodies formed, however, by both the X- and Y-chromosomes, rather than by one Y-chromosome.  相似文献   

9.
Karyospheres of ca. 200 mcm in diameter were isolated from the common frog oocytes of definitive size. An electron microscope study has revealed in the karyosphere fibrillar nucleoli and micronucleoli, modified synaptinemal complexes sometimes connected with chromatin and fibrillar material containing a great number of, mostly atypical, pore complexes resembling those of nuclear membrane and forming "pseudomembranes". An electrophoresis of the isolated karyosphere has revealed 12 distinct protein bands, of 3 which correspond to the protein triplet characteristic of the nuclear matrix and the rest 9 represent high molecular weight components with the molecular weight from 130 to 200,000 D.  相似文献   

10.
E V Zybina 《Tsitologiia》1975,17(8):875-880
An ultrastructural study of the rabbit oocyte nucleus was started from the early diplotene and extended to the large growth period to include the bilaminar follicle stage. During the large growth, the rabbit oocytes do not develop to the dictyate or "resting" stage, but remain at the diplotene. At the period preceeding the large growth (the early diplotene) lampbrush chromosomes are revealed made of the central axis 50 nm in diameter wish lateral fibrils. The aggregation of long loosely arranged fibrils makes the chromosome matrix. In the fibrillar zone of the chromosome, numerous roundish granules ca 45 nm in diameter and dense granule accumulations ca 0.15 mkm in diameter were visualized. Large fibrogranular bodies (1--2 mkm in diameter) are seen in association wish chromosomes. All these extra-nuclear bodies that appear on chromosomes differ in their size and pattern. These, likely as the nucleoli, may be considered as morphological expression of the genic activity of lampbrush chromosomes.  相似文献   

11.
On the basis of light, autoradiographic (uridine-3H incorporation) and electron microscopic investigation changes of nuclear structures were examined during the oogenesis in Chrysopa perla L. — In early meiotic prophase the oocyte nuclei were found to contain a large body of extrachromosomal DNA. In certain cases the latter splits up into several DNA clumps giving rise to a few (4–7) primary nucleoli, 3–5 in diameter. The primary nucleoli consist of densely packed fibrils 50–100 Å thick. They contain no granular component and are inactive in RNA synthesis. — At the beginning of large growth the extrachromosomal DNA bodies disappear and numerous electron-dense clumps, 0,5–1 in diameter, appear in the nucleus. Instead of the primary nucleoli, the nucleus now contains a great number of ring nucleoli about 0,5–1 in diameter with a granular component (granules are 150 Å). The space between them is filled up with nucleolar strands running from the surface of the ring nucleoli. — At the stage ring nucleoli of uridine–3 H incorporation into the oocyte nucleus begins. — During later previtellogenesis and at the beginning of vitellogenesis the ring nucleoli disappear and the nucleus is filled with the network of nucleolar strands. Among them there are specific complexes. These consist of electron dense masses, of granular clusters (granules 500 Å in diameter) and large fibrillar electron light bodies. At this stage the nucleus takes the most active part in RNA synthesis. — The process of karyosphere capsule formation was studied by electron microscopy. The capsule was found to be of fibrillar nature; its structure is very peculiar and unlike any known membrane components of the cell. On the basis of cytochemical evidences the characteristics of the capsule are given. — The development of a powerful nucleolar apparatus based on the extrachromosomal DNA and a possible role of the synaptonemal complex and extrachromosomal DNA in formation of the karyosphere capsule is discussed.  相似文献   

12.
13.
E W Zybinp 《Tsitologiia》1975,17(2):125-130
The electron microscope study of the nucleus and organoids of the rabbit oocytes cytoplasm during growth showed nucleoluslike bodies (RNP-granules) on the lampbrushen chromosomes to reach their maximal size at the stage of bilaminar follicle. The RNP-granules differ from the nucleoli by the time of their occurrence cytochemical characteristics, and by their ultrastructural pattern. Throughout the bilaminar follicle stage four components may be seen in the oocyte nucleolus: a dense fibrillar framework around the vacuoles, islets of the granular mass loosely dispersed, and electron dense fibrillar elements filling up the numberous electrontransparant vacuoles. The nucleolus-like bodies are round in shape and have no vacuoles, consisting to two components only: distinctly outlined granules, and weakly developed fibrillar component. The nuclear envelope is seen blebbing. Separation of two nuclear membranes forms a pocket-like enlargements of the perinuclear space. The pockets are limited by small regions between the adjacent nuclear pores. The outer membrane may bulge producing lacuma and large channels in the cytoplasm, which are interconnected making a closed branched network extending inside of the cytoplasm. The nuclear envelope is suggested to be involved in formation of the endoplasmic reticulum through the blebbing process.  相似文献   

14.
The nucleus of the maturing oocytes expands to a large thin body of 400×140×3 m but the chromosomes remain together in a small sphere, 15 m in diameter. In Aedes aegypti this sphere becomes surrounded by one to several layers of polycomplexes, annulated polycomplexes, and related annulated pseudomembranes. Just prior to egg laying the expanded nucleus disintegrates while the sphere of chromosomes is surrounded by several layers of membranes. In Culex pipiens the elements which normally connect the lateral elements of the synaptonemal complexes become extended so that all bivalents become interconnected by a framework of pseudomembranes. The continuity between the modified synaptonemal complexes and various membranes associated with the karyosphere suggest that a relationship exists, by origin or by specialization, between the synaptic structures and nuclear envelope.  相似文献   

15.
Summary In Nassarius reticulatus the nuclei and nucleoli undergo important morphological changes from the zygote to the 16-cell stage. In the zygote and in the trefoil (2-cell) and 4-cell stage, several agranular, fibrillar nucleolus-like bodies 1 m diameter are present in the interphase nucleus. Granular nucleoli first appear at the 8-cell stage. These nucleoli have fibrillar and granular regions. The granular regions are made up predominantly of ribosome-like osmiophilic granules. From the 16 and 32-cell stage onwards, the one or two spherical nucleoli of each nucleus measure 2.5 m in diameter and show a concentric organization with a very dense central region surrounded by a broad peripheral zone containing numerous granules, possibly of ribonucleoprotein. At the same time the number of ribosome-like particles increase in the karyoplasm and that of ribosomes in the cytoplasm. These findings are surprising because in eggs with radial cleavage, which have been subjected to more detailed analysis, the first granular nucleoli appear after the end of the cleavage, at the blastula or gastrula stage. The early appearance of granular nucleoli which seem to be characteristic of several eggs with spiral cleavage is discussed in connection with biochemical data on RNA-synthesis.This investigation was supported by the Deutsche Forschungsgemeinschaft and the Stiftung VolkswagenwerkWe wish to thank Mrs. C. Mehlis for valuable technical assistance and Prof. J. Bergerard for the excellent working conditions at the Station biologique at Roscoff (France)  相似文献   

16.
The karyosphere and nuclear bodies (NBs) were studied in Tenebrio molitor oocytes using immunoelectron cytochemistry. During early diplotene (previtellogenic stage), oocyte chromosomes begin to unite in a small nuclear volume forming the karyosphere. In vitellogenic oocyte nuclei, the chromatin undergoes condensation, and the karyosphere acquires a ring-shaped structure. The karyosphere is the only structure containing DNA in the oocyte nucleus. Pre-mRNA splicing factors [small nuclear ribonucleoproteins (snRNPs) and SC35] are not found in the karyosphere itself. In previtellogenic oocyte nuclei, these factors are present in NBs and in a fibrogranular substance surrounding the chromosomes in the early stages of karyosphere formation. At this stage, larger fibrillar NBs contain the non-snRNP splicing factor SC35. Smaller roundish NBs were shown to contain snRNPs. Some NBs with the same morphology contain neither snRNPs nor SC35. In the vitellogenic oocyte, there are fibrogranular NBs containing both snRNPs and SC35 splicing factors, fibrillar NBs containing snRNPs only, and complex NBs containing both. Complex NBs are often connected with the ring-shaped karyosphere. Based on the obtained immunoelectron data, we suggest that T. molitor oocyte NBs containing both snRNPs and the non-snRNP splicing factor SC35 are homologs of the well-characterized B-snurposomes in amphibian germinal vesicles and clusters of interchromatin granules in mammalian oocyte nuclei. Other NBs containing only snRNPs are suggested to represent a special class of insect oocyte snurposomes. The nuclear organelles mentioned seem to play a role as storage domains for pre-mRNA splicing factors during T. molitor oogenesis.  相似文献   

17.
Numerous bodies resembling nucleoli, named “prenucleolar bodies”, were seen in the interphase nucleus of Xenopus laevis embryos between stages 7 and 11 of Nieuwkoop and Faber (1956) but not at stage 12. These bodies are composed of thick strands, 200 A in diameter, and apparently differ from the fibrillar component of the true nucleolus which consists of thin fibrils, 50 A in diameter. The granular component of the true nucleolus consists of fibers and granules which are both also 150–200 A in diameter, but which differ in chemical nature from the prenucleolar bodies. The granular component and fibrillar component are readily digested by RNase with or without pretreatment with trypsin, while the prenucleolar body is only digested with RNase after pretreatment with trypsin. This suggests that the prenucleolar body consists of strands of RNA coated with protein. At stage 9, another type of nucleolus-like body is formed, which is larger (2–2.6 μ in diameter) than the prenucleolar body (0.2–1 μ) and consists of thin fibrils of 50 A. This body resembles the fibrillar component of the true nucleolus in the size of the elemental fibrils as well as in its susceptibility to actinomycin D, RNase and trypsin. It seems to be a precursor of the true nucleolus and for this reason was named the “primary nucleolus.” From stage 9 to stage 10, each nucleus in the presumptive ectodermal and mesodermal areas contains 2 primary nucleoli together with multiple prenucleolar bodies. At stage 12, the prenucleolar body is not seen at all, but a new type of nucleolus-like body appears. There are usually 2 of these bodies in each nucleus, and they consist of 2 components: a network of 50 A fibrils, and a group of strands, 150–200 A in diameter, containing some granule-like elements. The former has the same susceptibility to actinomycin D, RNase and/or trypsin as the fibrillar component of the definitive nucleolus and the primary nucleolus, while the latter has the same susceptibility as the granular component of the definitive nucleolus. Thus, this body may  相似文献   

18.
A comparative study of nuclear distribution of the chromatin-remodeling protein ATRX in the oocytes of three species of insects in which the oocyte nucleus at the diplotene stage differs in structure, has been carried out using fluorescent and immunoelectron microscopy. In tóhe oocyte nucleus of the tenebrionid beetles, Tribolium castaneum and Tenebrio molitor, ATRX preferably associates with the karyosphere (karyosome) that represents a result of concentration of the condensed chromosomes in a limited volume of the nucleus. In the oocyte nucleus of the house cricket, Acheta domesticus, in which a karyosphere does not form, the protein ATRX is distributed in the entire nuclear volume in association with the chromatin. The fact of ATRX presence in the extrachromosomal structures of the insect oocyte nucleus, the karyosphere capsule and specific nuclear bodies, is documented for the first time.  相似文献   

19.
20.
E V Zybina 《Tsitologiia》1979,21(11):1259-1265
Electron microscope study of the nuclear fragments in the rat trophoblast has demonstrated that the division of the trophoblast giant nucleus results first in the formation of a multinuclear cell. Each nuclear fragment is covered with its own nuclear envelope made of two membranes with numerous pore complexes. The chromatin in these nuclear fragments is condenced with various degrees of condensation, which depends on the step of placenta development, cell differentiation and the degree of nuclear fragmentation. The nuclear ultrastructure in nuclear fragments also depends on the degree of nuclear fragmentation and on the level of chromatin condensation. The nucleolus has no granular component. On large fragments, with lower chromatin condensation the nucleolus is not homogenous being made of fragments of more and of less electron dense fibrilles. Small light lacunae are seen in the nucleolus where chromatin threads and strands pass on. With a high chromatin condensation in the nucleus, round small nucleoli look homogenous being made of moderately electron dense fibrilles. Products of chromosome activity have been found in the nuclear fragments: accumulations of minute granules (d = 15--20 nm), perichromatinous granules (d = 35--40 nm), and fibrillar nucleolus-like bodies. In the multinuclear cell, made as the result of fragmentation of the initially giant nucleus, all the small nuclei are first arranged very close to each other, so that the contours of the neighbouring nuclei coincide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号