首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In vitro, a new protocol of plant regeneration in rose was achieved via protocorm-like bodies (PLBs) induced from the root-like organs named rhizoids that developed from leaf explants. The development of rhizoids is a critical stage for efficient regeneration, which is triggered by exogenous auxin. However, the role of cytokinin in the control of organogenesis in rose is as yet uncharacterized. The aim of this study was to elucidate the molecular mechanism of cytokinin-modulated rhizoid formation in Rosa canina. Here, we found that cytokinin is a key regulator in the formation of rhizoids. Treatment with cytokinin reduced callus activity and significantly inhibited rhizoid formation in Rosa canina. We further isolated the full-length cDNA of a type-A response regulator gene of cytokinin signaling, RcRR1, from which the deduced amino acid sequence contained the conserved DDK motif. Gene expression analysis revealed that RcRR1 was differentially expressed during rhizoid formation and its expression level was rapidly up-regulated by cytokinin. In addition, the functionality of RcRR1 was tested in Arabidopsis. RcRR1 was found to be localized to the nucleus in GFP-RcRR1 transgenic plants and overexpression of RcRR1 resulted in increased primary root length and lateral root density. More importantly, RcRR1 overexpression transgenic plants also showed reduced sensitivity to cytokinin during root growth; auxin distribution and the expression of auxin efflux carriers PIN genes were altered in RcRR1 overexpression plants. Taken together, these results demonstrate that RcRR1 is a functional type-A response regulator which is involved in cytokinin-regulated rhizoid formation in Rosa canina.  相似文献   

3.
4.
Classic plant tissue culture experiments have shown that exposure of cell culture to a high auxin to cytokinin ratio promotes root formation and a low auxin to cytokinin ratio leads to shoot regeneration. It has been widely accepted that auxin and cytokinin play an antagonistic role in the control of organ identities during organogenesis in vitro. Since the auxin level is highly elevated in the shoot meristem tissues, it is unclear how a low auxin to cytokinin ratio promotes the regeneration of shoots. To identify genes mediating the cytokinin and auxin interaction during organogenesis in vitro, three allelic mutants that display root instead of shoot regeneration in response to a low auxin to cytokinin ratio are identified using a forward genetic approach in Arabidopsis. Molecular characterization shows that the mutations disrupt the AUX1 gene, which has been reported to regulate auxin influx in plants. Meanwhile, we find that cytokinin substantially stimulates auxin accumulation and redistribution in calli and some specific tissues of Arabidopsis seedlings. In the aux1 mutants, the cytokinin regulated auxin accumulation and redistribution is substantially reduced in both calli and specific tissues of young seedlings. Our results suggest that auxin elevation and other changes stimulated by cytokinin, instead of low auxin or exogenous auxin directly applied, is essential for shoot regeneration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
In vitro organogenesis is well-controlled and thus provides an ideal system to study mechanisms of plant organ development. Although it has been well investigated for a long time that exogenous hormones play important roles in determining the types of organs regenerated in vitro, there is currently limited information available for other key factors that mediate de novo organ regeneration. Here, we reported simple and efficient one-step processes for evaluating capacities of inflorescence stem-derived in vitro organogenesis between two different ecotypes in Arabidopsis. Different types of organs, including shoots and roots were initiated from inflorescence stem explants cultured on the media containing 216 combinations of exogenous auxin and cytokinin. Further, we showed that Wassilewskija ecotype had the much higher shoot regeneration capacity than Columbia with different combinations of hormones, indicating that the ecotype is an essential factor determining de novo organogenesis. Our results also suggested that the defined expression patterns of genes involved in auxin and cytokinin biosynthesis were correlated with the variations in organogenesis capacities between the two ecotypes. Thus, in vitro organogenesis is likely regulated by ecotypes through mediating endogenous hormonal biosynthesis.  相似文献   

6.
De novo shoot organogenesis: from art to science   总被引:1,自引:0,他引:1  
In vitro shoot organogenesis and plant regeneration are crucial for both plant biotechnology and the fundamental study of plant biology. Although the importance of auxin and cytokinin has been known for more than six decades, the underlying molecular mechanisms of their function have only been revealed recently. Advances in identifying new Arabidopsis genes, implementing live-imaging tools and understanding cellular and molecular networks regulating de novo shoot organogenesis have helped to redefine the empirical models of shoot organogenesis and plant regeneration. Here, we review the functions and interactions of genes that control key steps in two distinct developmental processes: de novo shoot organogenesis and lateral root formation.  相似文献   

7.
Shoot organogenesis, one of the in vitro plant regeneration processes that occur during in vitro micropropagation, is used in the study of plant development. Morphological, physiological, and molecular aspects of in vitro shoot organogenesis have been extensively studied for over 50 years. Because of the research progress in plant genetics and molecular biology, our understanding of in planta and in vitro shoot meristem development, the cell cycle and cytokinin signal transduction has advanced significantly. These research advances provide useful information as well as molecular tools to study further the genetic and molecular aspects of shoot organogenesis. A number of key molecular markers, genes, and pathways have been shown to play a critical role in the process of in vitro shoot organogenesis. Furthermore, these studies reveal that in vitro shoot organogenesis, as with in planta shoot development, is a complex, well-coordinated developmental process, given that the induction of a single molecular event is likely to be insufficient to induce the entire process. Continued study is required to identify additional molecular events that trigger dedifferentiation and act as developmental switches for de novo shoot development.  相似文献   

8.
The interactions between the plant hormones auxin and cytokinin throughout plant development are complex, and genetic investigations of the interdependency of auxin and cytokinin signaling have been limited. We have characterized the cytokinin sensitivity of the auxin-resistant diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) in a range of auxin- and cytokinin-regulated responses. Intact, etiolated dgt seedlings showed cross-resistance to cytokinin with respect to root elongation, but cytokinin effects on hypocotyl growth and ethylene synthesis in these seedlings were not impaired by the dgt mutation. Seven-week-old, green wild-type and dgt plants were also equally sensitive to cytokinin with respect to shoot growth and hypocotyl and internode elongation. The effects of cytokinin and the dgt mutation on these processes appeared additive. In tissue culture organ regeneration from dgt hypocotyl explants showed reduced sensitivity to auxin but normal sensitivity to cytokinin, and the effects of cytokinin and the mutation were again additive. However, although callus induction from dgt hypocotyl explants required auxin and cytokinin, dgt calli did not show the typical concentration-dependent stimulation of growth by either auxin or cytokinin observed in wild-type calli. Cross-resistance of the dgt mutant to cytokinin thus was found to be limited to a small subset of auxin- and cytokinin-regulated growth processes affected by the dgt mutation, indicating that auxin and cytokinin regulate plant growth through both shared and separate signaling pathways.  相似文献   

9.

Background and Aims

Adventitious roots (ARs) are part of the root system in numerous plants, and are required for successful micropropagation. In the Arabidopsis thaliana primary root (PR) and lateral roots (LRs), the quiescent centre (QC) in the stem cell niche of the meristem controls apical growth with the involvement of auxin and cytokinin. In arabidopsis, ARs emerge in planta from the hypocotyl pericycle, and from different tissues in in vitro cultured explants, e.g. from the stem endodermis in thin cell layer (TCL) explants. The aim of this study was to investigate the establishment and maintenance of the QC in arabidopsis ARs, in planta and in TCL explants, because information about this process is still lacking, and it has potential use for biotechnological applications.

Methods

Expression of PR/LR QC markers and auxin influx (LAX3)/efflux (PIN1) genes was investigated in the presence/absence of exogenous auxin and cytokinin. Auxin was monitored by the DR5::GUS system and cytokinin by immunolocalization. The expression of the auxin-biosynthetic YUCCA6 gene was also investigated by in situ hybridization in planta and in AR-forming TCLs from the indole acetic acid (IAA)-overproducing superroot2-1 mutant and its wild type.

Key Results

The accumulation of auxin and the expression of the QC marker WOX5 characterized the early derivatives of the AR founder cells, in planta and in in vitro cultured TCLs. By determination of PIN1 auxin efflux carrier and LAX3 auxin influx carrier activities, an auxin maximum was determined to occur at the AR tip, to which WOX5 expression was restricted, establishing the positioning of the QC. Cytokinin caused a restriction of LAX3 and PIN1 expression domains, and concomitantly the auxin biosynthesis YUCCA6 gene was expressed in the apex.

Conclusions

In ARs formed in planta and TCLs, the QC is established in a similar way, and auxin transport and biosynthesis are involved through cytokinin tuning.  相似文献   

10.
The aim of the present study was to establish a regeneration system via de novo organogenesis from different types of non-meristematic explants of Passiflora cristalina. Leaf, hypocotyl, root segments, cotyledons, and endosperm of P. cristalina seeds were inoculated in Murashige and Skoog (MS)-basal medium, supplemented with different concentrations of 6-Benzyladenine (BA), Thidiazuron (TDZ), or Kinetin (KIN). BA was found to be the most efficient cytokinin in induction of de novo organogenesis from most the explants used in the study. The highest frequencies of adventitious bud formation in the hypocotyl and cotyledon explants were observed in medium supplemented with 1.0 mg L?1 BA. For leaf and endosperm segments, the best concentration was 2.0 mg L?1 BA; while for root segments, the highest mean values were observed with 1.0 mg L?1 KIN. The different morphogenetic responses obtained from each explant source were characterized using light microscopy. P. cristalina revealed a remarkable organogenic potential, with superior production of adventitious shoots compared with the other Passiflora species evaluated elsewhere. These results will be helpful to establish a reproducible and reliable micropropagation protocol, as well as to implement conservationist and biotechnological-based genetic breeding strategies for this wild Passiflora species.  相似文献   

11.
In leguminous plants, rhizobial infection of the epidermis triggers proliferation of cortical cells to form a nodule primordium. Recent studies have demonstrated that two classic phytohormones, cytokinin and auxin, have important functions in nodulation. The identification of these functions in Lotus japonicus was facilitated by use of the spontaneous nodule formation 2 (snf2) mutation of the putative cytokinin receptor LOTUS HISTIDINE KINASE 1 (LHK1). Analyses using snf2 demonstrated that constitutive activation of cytokinin signaling causes formation of spontaneous nodule-like structures in the absence of rhizobia and that auxin responses are induced in proliferating cortical cells during such spontaneous nodule development. Thus, cytokinin signaling positively regulates the auxin response. In the present study, we further investigated the induction of the auxin response using a gain-of-function mutation of Ca2+/calmodulin-dependent protein kinase (CCaMK) that causes spontaneous nodule formation. We demonstrate that CCaMKT265D-mediated spontaneous nodule development is accompanied by a localized auxin response. Thus, a localized auxin response at the site of an incipient nodule primordium is essential for nodule organogenesis.  相似文献   

12.
13.
Shoot organogenesis is one of the in vitro plant regeneration pathways. It has been widely employed in plant biotechnology for in vitro micropropagation and genetic transformation, as well as in study of plant development. Morphological and physiological aspects of in vitro shoot organogenesis have already been extensively studied in plant tissue culture for more than 50 years. Within the last ten years, given the research progress in plant genetics and molecular biology, our understanding of in vivo plant shoot meristem development, plant cell cycle, and cytokinin signal transduction has advanced significantly. These research advances have provided useful molecular tools and resources for the recent studies on the genetic and molecular aspects of in vitro shoot organogenesis. A few key molecular markers, genes, and probable pathways have been identified from these studies that are shown to be critically involved in in vitro shoot organogenesis. Furthermore, these studies have also indicated that in vitro shoot organogenesis, just as in in vivo shoot development, is a complex, well-coordinated developmental process, and induction of a single molecular event may not be sufficient to induce the occurrence of the entire process. Further study is needed to identify the early molecular event(s) that triggers dedifferentiation of somatic cells and serves as the developmental switch for de novo shoot development.  相似文献   

14.
15.
16.
17.
18.
Culture of stem segments of Solanum carolinense L. on medium supplemented with 10 mg/1 2,4-dichlorophenoxyacetic acid and 1 mg/1 kinetin, induced callus formation. When subcultured on medium lacking 2,4-D but containing a cytokinin, the callus regenerated. The mode of regeneration depended on the type and concentration of cytokinin employed; high concentrations of benzyladenine and all concentrations of kinetin promoted organogenesis, while low concentrations of benzyladenine induced somatic embryogenesis in addition to organogenesis. With age and continued subculture on 2,4-D containing medium, callus progressively lost its ability to regenerate when the auxin was replaced by cytokinin. In conjunction with previous studies on regeneration from anther cultures of S. carolinense, it appears that in both cases, 2,4-D is required for callus initiation and proliferation but must be exchanged for a cytokinin before differentiation will occur. However, since it was not possible to induce embryogenesis in pollen-derived callus, developmental potential may be influenced by the ploidy level of responding cells in culture.  相似文献   

19.
Plants differ from most animals in their ability to initiate new cycles of growth and development, which relies on the establishment and activity of branch meristems harboring new stem cell niches. In seed plants, this is achieved by axillary meristems, which are established in the axil of each leaf base and develop into lateral branches. Here, we describe the initial processes of Arabidopsis thaliana axillary meristem initiation. Using reporter gene expression analysis, we find that axillary meristems initiate from leaf axil cells with low auxin through stereotypical stages. Consistent with this, ectopic overproduction of auxin in the leaf axil efficiently inhibits axillary meristem initiation. Furthermore, our results demonstrate that auxin efflux is required for the leaf axil auxin minimum and axillary meristem initiation. After lowering of auxin levels, a subsequent cytokinin signaling pulse is observed prior to axillary meristem initiation. Genetic analysis suggests that cytokinin perception and signaling are both required for axillary meristem initiation. Finally, we show that cytokinin overproduction in the leaf axil partially rescue axillary meristem initiation-deficient mutants. These results define a mechanistic framework for understanding axillary meristem initiation.  相似文献   

20.
One of the most fascinating aspects of plant morphology is the regular geometric arrangement of leaves and flowers, called phyllotaxy. The shoot apical meristem (SAM) determines these patterns, which vary depending on species and developmental stage. Auxin acts as an instructive signal in leaf initiation, and its transport has been implicated in phyllotaxy regulation in Arabidopsis (Arabidopsis thaliana). Altered phyllotactic patterns are observed in a maize (Zea mays) mutant, aberrant phyllotaxy1 (abph1, also known as abphyl1), and ABPH1 encodes a cytokinin-inducible type A response regulator, suggesting that cytokinin signals are also involved in the mechanism by which phyllotactic patterns are established. Therefore, we investigated the interaction between auxin and cytokinin signaling in phyllotaxy. Treatment of maize shoots with a polar auxin transport inhibitor, 1-naphthylphthalamic acid, strongly reduced ABPH1 expression, suggesting that auxin or its polar transport is required for ABPH1 expression. Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis. Interestingly, maize PIN1 expression at the incipient leaf primordium was greatly reduced in abph1 mutants. Consistently, auxin levels were reduced in abph1, and the maize PIN1 homolog was induced not only by auxin but also by cytokinin treatments. Our results indicate distinct roles for ABPH1 as a negative regulator of SAM size and a positive regulator of PIN1 expression. These studies highlight a complex interaction between auxin and cytokinin signaling in the specification of phyllotactic patterns and suggest an alternative model for the generation of altered phyllotactic patterns in abph1 mutants. We propose that reduced auxin levels and PIN1 expression in abph1 mutant SAMs delay leaf initiation, contributing to the enlarged SAM and altered phyllotaxy of these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号