首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ubiquitination is an important post-translational protein modification that is known to play critical roles in diverse biological processes in eukaryotes. The RING E3 ligases function in ubiquitination pathways, and are involved in a large diversity of physiological processes in higher plants. The RING domain-containing E3 ligase AtRDUF1 was previously identified as a positive regulator of ABA-mediated dehydration stress response in Arabidopsis. In this study, we report that AtRDUF1 is involved in plant responses to salt stress. AtRDUF1 expression is upregulated by salt treatment. Overexpression of AtRDUF1 in Arabidopsis results in an insensitivity to salt and osmotic stresses during germination and seedling growth. A double knock-out mutant of AtRDUF1 and its close homolog AtRDUF2 (atrduf1atrduf2) was hypersensitive to salt treatment. The expression levels of the stress-response genes RD29B, RD22, and KIN1 are more sensitive to salt treatment in AtRDUF1 overexpression plants. In summary, our data show that AtRDUF1 positively regulates responses to salt stress in Arabidopsis.  相似文献   

3.
The calcium-dependent protein kinase (CDPK) family is needed in plant signaling during various physiological pathways. The Arabidopsis AtCPK6 gene belongs to the subclass of stress-inducible CDPKs, which is stimulated by salt and osmotic stress. To elucidate the physiological function of AtCPK6, transgenic Arabidopsis plants under the control of double CaMV 35S promoter were obtained. AtCPK6 over-expressing plants showed enhanced tolerance to salt/drought stresses. The elevated tolerance of the AtCPK6 over-expressing plants was confirmed by the change of proline and malondialdehyde (MDA). Real-time PCR analyses revealed that the expression levels of several stress-regulated genes were altered in AtCPK6 over-expressing plants. However, cpk6 mutant displayed no obvious difference with control. These results are likely to indicate that AtCPK6 is functionally redundant and a positive regulator involved in the tolerance to salt/drought stress in Arabidopsis.  相似文献   

4.
Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.  相似文献   

5.
Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses.  相似文献   

6.
Higher plants have acquired complex molecular mechanisms to withstand heat stress through years of natural evolutionary processes. Although physiological responses to elevated temperatures have been well studied, thermotolerance mechanisms at the molecular level are poorly understood in rice plants. In order to identify the genes involved in the thermotolerance of rice, we used a publicly available microarray dataset and identified a number of heat stress-responsive genes. Herein, we report details of the rice gene OsHSP1, which is upregulated by heat stress. In addition, OsHSP1 is highly expressed when exposed to salt and osmotic treatments but not cold treatment. Sequence analysis indicated that OsHSP1 belongs to the heat shock protein 90 family of genes. The biological function of OsHSP1 was investigated by heterologous overexpression in Arabidopsis. Transgenic Arabidopsis overexpressing the OsHSP1 gene exhibited enhanced thermotolerance but was hypersensitive under salt and osmotic stresses. Subcellular localization analysis indicated that the OsHSP1 protein is predominantly targeted to the cytosol and nucleus under heat stress. The coexpression network showed 39 interactions for the functionally interacting genes of OsHSP1. Taken together, these findings suggest that OsHSP1 is a heat-inducible gene that may play an important role in the thermotolerance of rice.  相似文献   

7.
Atypical kinase family, ABC1 (the activity of bc1 complex) genes play essential roles in plant growth, development and responses to be environmental stresses. Here, a novel gene, AtSIA1 (A. thaliana Salt-Induced ABC1 kinase 1) was cloned and characterized in Arabidopsis. Semi-quantitative RT-PCR analysis revealed that it constitutively expressed and mainly induced by salt treatment. AtSIA1-GFP fusion analysis showed that AtSIA1 is localized in chloroplasts. Transgenic plants with overexpression of AtSIA1 show higher tolerance to salt stress than that of the Col-0 and the knock-out mutant sia1 during seedling growth. Taken together, our results suggested that AtSIA1 may be involved in salt stress tolerance in Arabidopsis.  相似文献   

8.
9.
The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play essential roles in intracellular trafficking. However, few experimental data have clarified their roles in the stress responses and the early secretary pathway in Arabidopsis. The AtSec20 gene encodes a protein that is homologous to yeast Sec20p and mammalian BNIP1, which are involved in the Golgi-to-ER retrograde trafficking in yeast and mammalian cells. In this study, AtSec20 is found to be required for the responses to salt stress, osmotic stress and gibberellin (GA) during seed germination and early seedling establishment. Mutation of AtSec20 unaffects the morphology of intracellular organelles, such as endoplasmic reticulum (ER), trans-Golgi network, and peroxisome, and vacuolar protein trafficking is normal in sec20 mutants. Collectively, these results imply that the AtSec20 is involved in abiotic stress tolerance, potentially via roles in retrograde vesicle fusion process in Arabidopsis.  相似文献   

10.
Leucine-rich repeat (LRR) receptor-like kinase (RLK) proteins play key roles in a variety of biological pathways. In a previous study, we analyzed the members of the rice LRR-RLK gene family using in silico analysis. A total of 23 LRR-RLK genes were selected based on the expression patterns of a genome-wide dataset of microarrays. The Oryza sativa gamma-ray induced LRR-RLK1 (OsGIRL1) gene was highly induced by gamma irradiation. Therefore, we studied its expression pattern in response to various different abiotic and phytohormone treatments. OsGIRL1 was induced on exposure to abiotic stresses such as salt, osmotic, and heat, salicylic acid (SA), and abscisic acid (ABA), but exhibited downregulation in response to jasmonic acid (JA) treatment. The OsGIRL1 protein was clearly localized at the plasma membrane. The truncated proteins harboring juxtamembrane and kinase domains (or only harboring a kinase domain) exhibited strong autophosphorylation. The biological function of OsGIRL1 was investigated via heterologous overexpression of this gene in Arabidopsis plants subjected to gamma-ray irradiation, salt stress, osmotic stress, and heat stress. A hypersensitive response was observed in response to salt stress and heat stress, whereas a hyposensitive response was observed in response to gamma-ray treatment and osmotic stress. These results provide critical insights into the molecular functions of the rice LRR-RLK genes as receptors of external signals.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Expression of the gene (OsCA1) coding for carbonic anhydrase (CA) in leaves and roots of rice was induced by environmental stresses from salts (NaCl, NaHCO3 and Na2CO3), and osmotic stress (10%, w/v, PEG 6000). CA activity of rice seedlings more than doubled under some of these stresses. Transgenic Arabidopsis over-expressing OsCA1 had a greater salt tolerance at the seedling stage than wild-type plants in 1/2 MS medium with 5 mM NaHCO3, 50 mM NaCl, on 100 mM NaCl. Thus CA expression responds to environmental stresses and is related to stress tolerance in rice.  相似文献   

18.
C2H2-type zinc finger proteins (ZFPs) play diverse roles in plant response to abiotic stresses. ZAT6, an Arabidopsis C2H2-type ZFP, has been reported to regulate root development and nutrient stress responses. However, its roles in regulation of abiotic stress response are incompletely known. Here, we demonstrate that salt or osmotic stress triggers a strong increase in ZAT6 expression in leaves. Transgenic plants overexpressing ZAT6 showed improved seed germination under salt and osmotic stress. Intriguingly, ZAT6 interacts with a stress-responsive mitogen-activated protein kinase MPK6 in vitro and in planta. ZAT6 is phosphorylated by both recombinant and plant endogenous MPK6. Serine 8 and serine 223 in ZAT6 were identified as the sites phosphorylated by MPK6. In contrast to wild-type form of ZAT6, overexpression of phosphorylation mutant form did not display significantly enhanced salt and osmotic stress tolerance. Altogether, our results suggest that phosphorylation by MPK6 is required for the functional role of ZAT6 in seed germination under salt and osmotic stress.  相似文献   

19.
20.
No information is currently available in plants concerning the tyrosyl-DNA phosphodiesterase 2 (Tdp2) enzyme which in animals is involved in the removal of DNA topoisomerase II-mediated DNA damage and cell proliferation/differentiation signaling. Bioinformatic investigation revealed the occurrence in the plant kingdom of three distinct Tdp2 isoforms, named α, β and γ. The MtTdp2α gene from Medicago truncatula Gaertn., encoding a protein with putative nuclear localization signal and chloroplast transit peptide, was significantly up-regulated in response to osmotic stress induced by polyethylene glycol. The transgenic M. truncatula lines Tdp2α-13C and Tdp2α-28 overexpressing the MtTdp2α gene were characterised by enhanced tolerance to both osmotic and photo-oxidative stress. According to single cell gel electrophoresis, MtTdp2α gene overexpression prevented accumulation of double strand breaks in absence and presence of osmotic stress. Interestingly, the MtMRE11, MtRAD50 and MtNBS1 genes involved in double strand break sensing/repair were significantly up-regulated in the MtTdp2α-overexpressing plants grown under physiological conditions and no further up-regulation occurred in response the osmotic agent. The Tdp2α-13C and Tdp2α-28 lines also showed significant up-regulation of several genes essential for the control of DNA topology and genome maintenance, such as MtTdp1α, MtTop2 (DNA topoisomerase II) and MtGYR (DNA gyrase). The role of MtTdp2α gene in enhancing the plant response to genotoxic injury under osmotic stress is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号