首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of predation on the use of social foraging tactics, such as producing and scrounging, are poorly known in animals. On the one hand, recent theoretical models predict increased use of scrounging with increasing predation risk, when scroungers seeking feeding opportunities also have a higher chance of detecting predators. On the other hand, there may be no relation between tactic use and predation when antipredator vigilance is not compatible with scanning flockmates. We investigated experimentally the effects of predation risk on social foraging tactic use in tree sparrows, Passer montanus. We manipulated predation risk in the field by changing the distance between shelter and a feeder. Birds visited the feeder in smaller flocks, spent less time on it and were somewhat more vigilant far from shelter than close to it. Increased predation risk strongly affected the social foraging tactic used: birds used the scrounger tactic 30% more often far from cover than close to it. Between-flock variability in scrounging frequency was not related to the average vigilance level of the flock members, and within-flock variability in the use of scrounging was negatively related to the vigilance of birds. Our results suggest that in tree sparrows, the increased frequency of scrounging during high predation risk cannot simply be explained by an additional advantage of increasing antipredator vigilance. We propose alternative mechanisms (e.g. increased stochasticity in food supply, and that riskier places are used by individuals with lower reserves) that may explain increased scrounging when animals forage under high predation risk.  相似文献   

2.
Individuals within a group do not all act in the same way: Typically, the investors (or producers) put efforts into producing resources while the free riders (or scroungers) benefit from these resources without contributing. In behavioral ecology, the prevalence of free riders can be predicted by a well‐known game‐theoretical model—the producer–scrounger (PS) model—where group members have the options to either search for resources (producers) or exploit the efforts of others (scroungers). The PS model has received some empirical support, but its predictions, surprisingly, are based on the strict assumption that only one resource can be exploited at a time. Yet, multiple simultaneous opportunities to exploit others’ efforts should frequently occur in nature. Here, we combine analytic and simulation approaches to explore the effect of multiple simultaneous scrounging opportunities on tactic use. Our analyses demonstrate that scrounging rates should increase with the number of simultaneous opportunities. As such, the amount and spatial distribution (i.e., clumped vs. dispersed) of resources as well as the risk of predation are key predictors of scrounging behavior. Because scroungers contribute to reducing the speed of resource exploitation, the model proposed here has direct relevance to the exploitation and sustainability of renewable resources.  相似文献   

3.
Social foraging allows individuals to scrounge, i.e. to exploit the food others have made available. The conditions promoting scrounging as an alternative foraging tactic have yet received limited attention. We presently examine whether ravens, as opportunistic scavengers, adjust their foraging tactics according to the potential costs involved in accessing a particular food source. We observed wild ravens foraging in a game park, at the enclosures of wolves, Canis lupus, and wild boars, Sus scrofa. Wolves may aggressively defend their food and even kill ravens, whereas wild boars do not. When co‐feeding with wolves, the ravens showed higher scrounging rates than with wild boars. Only at the wolves, they tended to specialize either on scrounging or on getting food directly from the site. However, scrounging techniques differed in relation to the state of food depletion. Early on, after food became available, the ravens most frequently displaced others from food, whereas towards the end, stealing, solicited sharing, and cache raiding became prevalent. These techniques differed in their profitability and their use was related to the scroungers’ age, social status and affiliative relationships. This suggests that ecological conditions, such as co‐feeding with potential predators, may influence the individuals’ decision whether or not to scrounge in competition for food. Social conditions, on the other hand, may affect the way how to get at food possessed by others and may thus, to a large extent, determine the profitability of scrounging.  相似文献   

4.
In flocks, individuals can search for their own food using the producer tactic or exploit the discoveries of companions using the scrounger tactic. Models of the producer–scrounger game usually assume that tactic payoffs are independent of individual phenotypic traits. However, factors such as dominance status or foraging efficiency may constrain the use of tactics and lead to asymmetric tactic use among individuals. For instance, in flocks composed of foragers with unequal foraging efficiency, foragers that are less efficient at obtaining food are expected to rely on the scrounger tactic to a greater extent. I examined the role of foraging efficiency and dominance status as potential correlates of scrounging behavior in small aviary flocks of zebra finches (Taenopygia guttata). Individual foraging efficiency was documented in each flock in a treatment that prevented scrounging. In a subsequent treatment that allowed scrounging, higher levels of scrounging occurred as predicted in foragers with lower foraging efficiency. Dominance status was a poor predictor of tactic choice. Birds that arrived later on the foraging grid foraged less efficiently when scrounging was prevented and used scrounging to a greater extent when allowed, suggesting a link between boldness, foraging efficiency and the choice of foraging tactics in small flocks of zebra finches.  相似文献   

5.
The benefit of producer (searches for own food) or scrounger (exploits the others’ food discoveries) foraging tactic in a group of socially feeding animals may depend on where the individual searches for food within the group. Scrounging may be more advantageous in the centre of the group, having more individuals around to join, while producing may be more beneficial at the edges, where more unexplored food patches may be found. This study shows within‐flock position correlates with foraging tactic use of feeding birds in socially foraging tree sparrows, Passer montanus. Sparrows staying closer to the centre of the flock found their food patches more frequently by joining (i.e. use more frequently the scrounging tactic) than those staying toward the edges. To our knowledge this is the first field study demonstrating the relationship between spatial position and foraging tactic use. We investigated this relationship under different perceived predation hazard, and found that under elevated risk of predation, central individuals may increase their use of joining more than individuals on the periphery of the flock. Moreover, we show that extremely specialized use of searching tactics may be very infrequent in tree sparrows. As both within‐flock position and search tactic use can be altered very quickly and without leaving the flock, individuals may easily alter them in order to adjust their behaviour.  相似文献   

6.
In groups, animals can use the producer tactic to locate food patches and the scrounger tactic to join the food discoveries of other companions. At equilibrium, models predict a mixture of the two tactics with equal payoffs. Several factors may constrain the use of tactics and lead to biases in scrounging choices. I explored the effect of prior residence and pair bond as potential constraints on scrounging choices in flocks of zebra finches (Taenopygia guttata). Experimental flocks contained two birds already established in an aviary (prior residents) and two birds recently released in the aviary for the first time (new residents). All birds were previously trained to find food on a foraging grid. In the aviary, new residents followed prior residents from perches to the grid and relied heavily on prior residents to locate food patches. Low initial success by new residents probably favoured heavy reliance on the scrounger tactic. New residents that formed pair bonds with prior residents foraged closer to their mates and scrounged selectively from their mates in some cases. Prior residence, and pair bond to a lesser extent, influenced scrounging choices in zebra finches and could lead to deviation from the expected use of foraging tactics.  相似文献   

7.
Grouping in animals is ubiquitous and thought to provide group members antipredatory advantages and foraging efficiency. However, parasitic foraging strategy often emerges in a group. The optimal parasitic policy has given rise to the producer-scrounger (PS) game model, in which producers search for food patches, and scroungers parasitize the discovered patches. The N-persons PS game model constructed by Vickery et al. (1991. Producers, scroungers, and group foraging. American Naturalist 137, 847-863) predicts the evolutionarily stable strategy (ESS) of frequency of producers that depends on the advantage of producers and the number of foragers in a group. However, the model assumes that the number of discovered patches in one time unit never exceeds one. In reality, multiple patches could be found in one time unit. In the present study, we relax this assumption and assumed that the number of discovered patches depends on the producers’ variable encounter rate with patches (λ). We show that strongly depends on λ within a feasible range, although it still depends on the advantage of producer and the number of foragers in a group. The basic idea of PS game is the same as the information sharing (parasitism), because scroungers are also thought to parasitize informations of locations of food patches. Horn (1968) indicated the role of information-parasitism in animal aggregation (Horn, H.S., 1968. The adaptive significance of colonial nesting in the Brewer's blackbird (euphagus cyanocephalus). Ecology 49, 682-646). Our modified PS game model shows the same prediction as the Horn's graphical animal aggregation model; the proportion of scroungers will increase or animals should adopt colonial foraging when resource is spatiotemporally clumped, but scroungers will decrease or animals should adopt territorial foraging if the resource is evenly distributed.  相似文献   

8.
Group-foraging animals can either search for their food (producer) or search for opportunities to join the food discoveries of others (scrounger). To maximize food returns, producers should distance themselves from potential competitors whereas scroungers should increase proximity to potential producers. We investigated the extent to which playing one or the other tactic affected an individual's location in captive flocks of ground-feeding spice finches ( Lonchura punctulata ) as they foraged for hidden clumps of food on an aviary floor. We constrained some individuals to use the producer tactic by pre-training them to find food hidden under lids. Constrained producers foraged significantly further from the center of flocks than constrained scroungers. Flocks with many scroungers were significantly more compact than flocks with fewer scroungers. The results are consistent with published simulations of spatially explicit producer–scrounger models and suggest that the use of producer and scrounger foraging tactics be included as a factor that affects an individual's position within foraging groups.  相似文献   

9.
Animals often use alternative strategies when they compete for resources, but it is unclear in most cases what factors determine the actual tactic followed by individuals. Although recent models suggest that the internal state of animals may be particularly important in tactic choice, the effects of state variables on the use of alternative behavioural forms have rarely been demonstrated. In this study, using experimental wind exposure to increase overnight energy expenditure, we show that flock-feeding house sparrows (Passer domesticus) with lowered energy reserves increase their use of scrounging (exploiting others' food findings) during their first feed of the day. This result is in accordance with the prediction of a state-dependent model of use of social foraging tactics. We also show that scrounging provides less variable feeding rates and patch finding times than the alternative tactic. These latter results support the theoretical assumption that scrounging is a risk-averse tactic, i.e. it reduces the risk of immediate starvation. As the level of energy reserves predicts the use of social foraging tactics, we propose that selection should favour individuals that monitor the internal state of flock mates and use this information to adjust their own tactic choice.  相似文献   

10.
Group foraging allows individuals (scroungers) to obtain fooddiscovered by others (producers). Producer-scrounger game modelstypically overlook the costs and benefits of patch exploitation,assuming instead that producers and scroungers abandon patchessimultaneously once depletion occurs. Here we develop an extensionof the marginal value theorem of patch exploitation that includesthe producer-scrounger dynamics and examine the propensity ofa producer to abandon its patch before depletion once scroungersarrive. We predict that early departures should occur more oftenwhen expected searching time decreases and when competitionintensity in the patch increases. Competition intensity is expectedto increase when more scroungers are present or when patchesare smaller. We tested these predictions using a within-subjectexperimental design with six captive flocks of spice finches(Lonchura punctulata), each composed of one producer and threescroungers. As predicted, producers abandoned their food discoveriesmore frequently once scroungers arrived when searching timewas short, when more scroungers were present, and when patcheswere small. The results show that the producers of a patch oftenleave as scroungers join their food discoveries because thepayoffs from leaving exceed those from staying  相似文献   

11.
A tension between cooperation and conflict characterizes the behavioral dynamics of many social species. The foraging benefits of group living include increased efficiency and reduced need for vigilance, but social foraging can also encourage theft of captured prey from conspecifics. The payoffs of stealing prey from others (scrounging) versus capturing prey (producing) may depend not only on the frequency of each foraging strategy in the group but also on an individual’s ability to steal. By observing the foraging behavior of juvenile coho salmon (Oncorhynchus kisutch), we found that, within a group, relatively smaller coho acted primarily as producers and took longer to handle prey, and were therefore more likely to be targeted by scroungers than relatively larger coho. Further, our observations suggest that the frequency of scrounging may be higher when groups contained individuals of different sizes. Based on these observations, we developed a model of phenotype-limited producer-scrounger dynamics, in which rates of stealing were structured by the relative size of producers and scroungers within the foraging group. Model simulations show that when the success of stealing is positively related to body size, relatively large predators should tend to be scroungers while smaller predators should be producers. Contrary to previous models, we also found that, under certain conditions, producer and scrounger strategies could coexist for both large and small phenotypes. Large scroungers tended to receive the highest payoff, suggesting that producer-scrounger dynamics may result in an uneven distribution of benefits among group members that—under the right conditions—could entrench social positions of dominance.  相似文献   

12.
When foraging together, animals are often observed to feed from food discoveries of others. The producer-scrounger (PS) game predicts how frequently this phenomenon of food parasitism should occur. The game assumes: (1) at any moment all individuals can unambiguously be categorized as either playing producer (searching for undiscovered food resources) or scrounger (searching for exploitation opportunities), and (2) the payoffs received from the scrounger tactic are negatively frequency dependent; a scrounger does better than a producer when the scrounger tactic is rare, but worse when it is common. No study to date has shown that the payoffs of producer and scrounger conform to the game's assumptions or that groups of foragers reach the predicted stable equilibrium frequency (SEF) of scrounger, whereby both tactics obtain the same payoff. The current study of three captive flocks of spice finches, Lonchura punctulata, provides the first test of the PS game using an apparatus in which both assumptions of the PS game are met. The payoffs to the scrounger, measured as feeding rate (seeds/s), were highly negatively frequency dependent on the frequency of scrounger. The feeding rate for scrounger declined linearly while the rate for producer either declined only slightly or not at all with increasing scrounger frequency. When given the opportunity to alternate between tactics, the birds changed their use of each, such that the group converged on the predicted SEF of scrounger after 5-8 days of testing. Individuals in this study, therefore, demonstrated sufficient plasticity in tactic use such that the flock foraged at the SEF of scrounger. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

13.
Effect of Group Size on Feeding Rate when Patches are Exhaustible   总被引:1,自引:1,他引:0  
One benefit of group foraging is that individual foragers can join the food discoveries of companions and thus increase encounter rate with food patches. When food patches are exhaustible, however, individual shares of each patch will decrease with group size negating the effect of increased encounter rate. Mean feeding rate may actually decrease with group size as a result of aggression or time wasted joining already depleted patches, or when searching to join the food discoveries of others, which is referred to as scrounging, precludes finding food. I examined the relationship between mean feeding rate and group size in captive flocks of zebra finches (Taenopygia guttata) foraging for small clumps of seeds. Finches in groups of two or four fared better than solitary birds in terms of mean feeding rate despite the fact that birds in groups scrounged a large proportion of their food. Solitary birds initiated feeding activity after a longer delay, which led to their lower success. Early departures by food finders from food patches joined by others may have lessened the impact of scrounging on mean feeding rate. As a result of benefits from the presence of companions, group foraging in zebra finches appears a viable alternative to foraging alone despite the cost of sharing resources.  相似文献   

14.
Among group‐living spiders, subsocial representatives in the family of crab spiders (Thomisidae) are a special case, as they build protective communal leaf nests instead of extensive communal capture webs. It could thus be inferred that antipredator benefits (e.g., enhanced protection in larger nests) rather than foraging‐related advantages (e.g., capture of more and larger prey) promote sociality in this family. Nonetheless, subsocial crab spiders do share prey, and if this behaviour does not reflect mere food scramble but has a cooperative character, crab spiders may offer insights into the evolution of social foraging applicable to many other cooperative predators that hunt without traps. Here, we performed a comparative laboratory feeding experiment on three of the four subsocial crab spider species—Australomisidia ergandros, Australomisidia socialis and Xysticus bimaculatus—to determine if crab spiders derive advantages from foraging in groups. In particular, we tested artificially composed groups of five sibling spiderlings vs. single siblings in terms of prey capture success and prey size preference. Across species, groups had higher prey capture success (measured in terms of capture rates and capture latency) and were more likely to attack large, sharable prey—dynamics leading to reduced food competition among group members in favour of living and foraging in groups. Within groups, we further compared prey extraction efficiency among the three applied social foraging tactics: producing, scrounging and feeding alone. In A. ergandros, individuals were exceptionally efficient when using the non‐cooperative scrounger tactic, which entails feeding on the prey provided by others. Thus, our multispecies comparison confirms foraging advantages in maintaining a cooperative lifestyle for crab spiders, but also demonstrates the relevance of research into exploitation of cooperative foraging in this family.  相似文献   

15.
This study shows, for the first time, that the evolution of a simple behavior, scrounging, at the individual level can have effects on populations, food chains, and community structure. In particular, the addition of scrounging in consumer populations can allow multiple consumers to coexist while exploiting a single prey. Also, scrounging in the top predator of a tritrophic food chain can stabilize interactions between the top predator, its prey, and its prey's prey. This occurs because the payoffs to scrounging for food in a population are negative frequency dependent, allowing scroungers to invade a population and to coexist with producers at a frequency which is density‐dependent. The presence of scroungers, who do not search for resources but simply use those found by others (producers) reduces the total amount of resource acquired by the group. As scrounging increases with group size, this leads to less resource acquired per individual as the group grows. Ultimately, this limits the size of the group, its impact on its prey, and its ability to outcompete other species. These effects can promote stability and thus increase species diversity. I will further suggest that prey may alter their spatial distribution such that scrounging will be profitable among their predators thus reducing predation rate on the prey.  相似文献   

16.
When animals forage in groups, individuals can search for foodthemselves (producer tactic) or they can search for and joinother individuals that have located food (scrounger tactic).The scrounger tactic may provide greater antipredator benefitsthan the producer tactic because "scroungers" hop with theirheads up and tend to occupy central positions in a group, whereas"producers" hop with their heads down and tend to occupy edgepositions. We tested whether increasing an individual's vulnerabilityto predation (using wing-loading manipulations) causes an increasedpreference for the scrounger tactic in zebra finches (Taeniopygiaguttata). Wing-loading manipulations were effective at increasingfocal individuals' perception of vulnerability to predation;treatment individuals increased their total time allocated tovigilance, whereas control individuals did not. Treatment individualsalso increased their use of the scrounger tactic (proportionof hops with head up) and scrounged a greater proportion ofpatches, whereas control individuals exhibited no changes. Ourresults are consistent with the hypothesis that the scroungertactic confers greater antipredator benefits than the producertactic, although whether antipredator benefits are achievedthrough differences in head orientation, spatial position, orboth, remains unclear. Our finding that individuals adjust theiruse of the scrounger tactic according to changes in their phenotypeprovides evidence for phenotype-limited allocation strategiesin producer–scrounger games.  相似文献   

17.
Group foraging allows for individuals to exploit the food discoveriesof other group members. If searching for food and searchingfor exploitation opportunities within a group are mutually exclusivealternatives, the decision to use one or the other is modeledas a producer-scrounger game because the value of each alternativeis frequency dependent. Stochastic producer-scrounger modelsgenerally assume that producer provides a more variable anduncertain reward than does the scrounger and hence is a riskierforaging alternative. Socially foraging animals that are attemptingto reduce their risk of starvation should therefore alter theiruse of producer and scrounger alternatives in response to changesin energy budget. We observed flocks of nutmeg mannikins (L.punctulata) foraging in an indoor aviary to determine whethertheir use of producer and scrounger alternatives were risk sensitive.Analyses of the foraging rewards of three flocks of seven birdsconfirm that producer is a riskier foraging strategy than isscrounger, although the difference in risk is rather small.We then submitted two other flocks to two different energy budgetsand observed the foraging decision of four focal birds in eachflock. All but one bird increased their relative use of theriskier producer strategy in the low food reserve treatment,but the overall use of producer did not differ significantlybetween treatments, providing evidence for a small but consistenteffect.  相似文献   

18.
Feeding in groups often gives rise to joining: feeding from other's discoveries. The joining decision has been modeled as a producer-scrounger game where the producer strategy consists of searching for one's food and the scrounger strategy consists of searching for food discovered by others. Previous models revealed that the evolutionarily stable proportion of scrounging mostly depends on the fraction of each food patch available only to its producer. These early models are static and state independent and are therefore unable to explore whether the time of day, the animal's state, and the degree of predation hazard influence an individual's decision of whether to use the producer or scrounger strategy. To investigate these issues, we developed a state-dependent dynamic producer-scrounger game model. The model predicts that, early in the day, low reserves promote a preference for the scrounger strategy, while the same condition late in the day favors the use of the producer strategy. Under rich and clumped food, the availability of scrounging can improve the daily survival of any average group member. The model suggests only weak effects of predation hazard on the use of scrounging. Future developments should consider the effects of dominance asymmetries and allowing foragers a choice between foraging alone or in a group harboring an evolutionarily stable frequency of scrounger.  相似文献   

19.
Most social foragers must search for food while avoiding predators. Group-foraging nutmeg mannikins engaged in a producer-scrounger game search for their own food (play producer) by hopping with the head down and search for others' food discoveries (play scrounger) by hopping with the head up. If the scrounger tactic is compatible with antipredatory vigilance, then an increase in antipredatory vigilance should lead to the detection of more joining opportunities, and hence to more joining by foragers. We tested this prediction as well as the extent to which stationary birds use head up exclusively for antipredatory purposes and hopping birds use head up for foraging purposes only. We observed three flocks of nutmeg mannikins searching for hidden clumps of food in an indoor aviary. We used a 2×2 factorial design in which both the distance to a safe refuge and the food distribution were manipulated. The use of head up by stationary and eating birds increased significantly with increased distance to cover. Distance to cover, however, had no effect on the use of the scrounger tactic or on the level of joining. We found no evidence of compatibility between the scrounger tactic and antipredatory vigilance. Our results provide the first unambiguous evidence for the existence of two distinct and incompatible patterns of vigilance for predators and for conspecifics. Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

20.
A basic but rarely tested assumption in optimal foraging theoryis that positive relationships exist between the foraging patternof an animal, its short-term benefits in feeding, and its long-termfitness. We present evidence for these relationships for a centralplace foraging situation. We studied the foraging behavior ofadult water pipits (Anthus sp. spinoletta) feeding nestlingsin an Alpine habitat near Davos, Switzerland, with the followingresults: (1) searching effort decreases with increasing distancefrom the nest, (2) the amount of prey and the proportion oflarge items brought to the nest increases with increasing foragingdistance, (3) water pipits do not forage according to habitatavailability, but prefer vegetation types with the highest fooddensity (mainly grass and herbs) and avoid those with the lowest,and (4) this selectivity is only expressed when the birds foragemore than 50 m from the nest, i.e., usually outside the territory.Among the several potential interpretations of these results,the most parsimonious is that foraging decisions are based onprofitability, i.e., on the net energy gain per time unit. Additionally,we found that food conditions translate into fitness: the numberof fledglings per nest is related positively to the averageprey biomass at the foraging place and negatively to the averagedistance between the foraging place and the nest. Maximum economicdistances, which were predicted from this food-fitness relationship,agreed well with the actual foraging distances observed. Thissuggests a dose connection between foraging decisions and fitness.In addition to the theoretical issues, some conservation issuesare also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号