首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.  相似文献   

2.
Synaptic transmission depends on the efficient loading of transmitters into synaptic vesicles by vesicular neurotransmitter transporters. The vesicular monoamine transporter-2 (VMAT2) is essential for loading monoamines into vesicles and maintaining normal neurotransmission. In an effort to understand the regulatory mechanisms associated with VMAT2, we have embarked upon a systematic search for interacting proteins. Glutathione-S-transferase pull-down assays combined with mass spectrometry led to the identification of the 70-kDa heat shock cognate protein (Hsc70) as a VMAT2 interacting protein. Co-immunoprecipitation experiments in brain tissue and heterologous cells confirmed this interaction. A direct binding was observed between the amino terminus and the third cytoplasmic loop of VMAT2, as well as, a region containing the substrate binding and the carboxy-terminal domains of Hsc70. Furthermore, VMAT2 and Hsc70 co-fractionated with purified synaptic vesicles obtained from a sucrose gradient, suggesting that this interaction occurs at the synaptic vesicle membrane. The functional significance of this novel VMAT2/Hsc70 interaction was examined by performing vesicular uptake assays in heterologous cells and purified synaptic vesicles from brain tissue. Recombinant Hsc70 produced a dose-dependent inhibition of VMAT2 activity. This effect was mimicked by the closely related Hsp70 protein. In contrast, VMAT2 activity was not altered in the presence of previously denatured Hsc70 or Hsp70, as well as the unrelated Hsp60 protein; confirming the specificity of the Hsc70 effect. Finally, a purified Hsc70 fragment that binds VMAT2 was sufficient to inhibit VMAT2 activity in synaptic vesicles. Our results suggest an important role for Hsc70 in VMAT2 function and regulation.  相似文献   

3.
《Fly》2013,7(4):302-305
During exocytosis, classical and amino acid neurotransmitters are released from the lumen of synaptic vesicles to allow signaling at the synapse. The storage of neurotransmitters in synaptic vesicles and other types of secretory vesicles requires the activity of specific vesicular transporters. Glutamate and monoamines such as dopamine are packaged by VGLUTs and VMATs respectively. Changes in the localization of either protein have the potential to up- or down regulate neurotransmitter release, and some of the mechanisms for sorting these proteins to secretory vesicles have been investigated in cultured cells in vitro. We have used Drosophila molecular genetic techniques to study vesicular transporter trafficking in an intact organism and have identified a motif required for localizing Drosophila VMAT (DVMAT) to synaptic vesicles in vivo. In contrast to DVMAT, large deletions of Drosophila VGLUT (DVGLUT) show relatively modest deficits in localizing to synaptic vesicles, suggesting that DVMAT and DVGLUT may undergo different modes of trafficking at the synapse. Further in vivo studies of DVMAT trafficking mutants will allow us to determine how changes in the localization of vesicular transporters affect the nervous system as a whole and complex behaviors mediated by aminergic circuits.  相似文献   

4.
Studies of synapsin-deficient mice have shown decreases in the number of synaptic vesicles but knowledge about the consequences of this decrease, and which classes of vesicles are being affected, has been lacking. In this study, glutamatergic, GABAergic and dopaminergic transport has been analysed in animals where the genes encoding synapsin I and II were inactivated. The levels of the vesicular glutamate transporter (VGLUT) 1, VGLUT2 and the vesicular GABA transporter (VGAT) were decreased by approximately 40% in adult forebrain from mice devoid of synapsin I and II, while vesicular monoamine transporter (VMAT) 2 and VGLUT3 were present in unchanged amounts compared with wild-type mice. Functional studies on synaptic vesicles showed that the vesicular uptake of glutamate and GABA was decreased by 41 and 23%, respectively, while uptake of dopamine was unaffected by the lack of synapsin I and II. Double-labelling studies showed that VGLUT1 and VGLUT2 colocalized fully with synapsin I and/or II in the hippocampus and neostriatum, respectively. VGAT showed partial colocalization, while VGLUT3 and VMAT2 did not colocalize with either synapsin I or II in the brain areas studied. In conclusion, distinct vesicular transporters show a variable degree of colocalization with synapsin proteins and, hence, distinct sensitivities to inactivation of the genes encoding synapsin I and II.  相似文献   

5.
《The Journal of cell biology》1994,127(5):1419-1433
Neurons and endocrine cells have two types of secretory vesicle that undergo regulated exocytosis. Large dense core vesicles (LDCVs) store neural peptides whereas small clear synaptic vesicles store classical neurotransmitters such as acetylcholine, gamma-aminobutyric acid (GABA), glycine, and glutamate. However, monoamines differ from other classical transmitters and have been reported to appear in both LDCVs and smaller vesicles. To localize the transporter that packages monoamines into secretory vesicles, we have raised antibodies to a COOH- terminal sequence from the vesicular amine transporter expressed in the adrenal gland (VMAT1). Like synaptic vesicle proteins, the transporter occurs in endosomes of transfected CHO cells, accounting for the observed vesicular transport activity. In rat pheochromocytoma PC12 cells, the transporter occurs principally in LDCVs by both immunofluorescence and density gradient centrifugation. Synaptic-like microvesicles in PC12 cells contain relatively little VMAT1. The results appear to account for the storage of monoamines by LDCVs in the adrenal medulla and indicate that VMAT1 provides a novel membrane protein marker unique to LDCVs.  相似文献   

6.
Transport mechanisms in acetylcholine and monoamine storage.   总被引:10,自引:0,他引:10  
S M Parsons 《FASEB journal》2000,14(15):2423-2434
Sequence-related vesicular acetylcholine transporter (VAChT) and vesicular monoamine transporter (VMAT) transport neurotransmitter substrates into secretory vesicles. This review seeks to identify shared and differentiated aspects of the transport mechanisms. VAChT and VMAT exchange two protons per substrate molecule with very similar initial velocity kinetics and pH dependencies. However, vesicular gradients of ACh in vivo are much smaller than the driving force for uptake and vesicular gradients of monoamines, suggesting the existence of a regulatory mechanism in ACh storage not found in monoamine storage. The importance of microscopic rather than macroscopic kinetics in structure-function analysis is described. Transporter regions affecting binding or translocation of substrates, inhibitors, and protons have been found with photoaffinity labeling, chimeras, and single-site mutations. VAChT and VMAT exhibit partial structural and mechanistic homology with lactose permease, which belongs to the same sequence-defined superfamily, despite opposite directions of substrate transport. The vesicular transporters translocate the first proton using homologous aspartates in putative transmembrane domain X (ten), but they translocate the second proton using unknown residues that might not be conserved between them. Comparative analysis of the VAChT and VMAT transport mechanisms will aid understanding of regulation in neurotransmitter storage.  相似文献   

7.
gamma-Aminobutyric acid (GABA) and glycine are stored into synaptic vesicles by a recently identified vesicular inhibitory amino acid transporter [VIAAT, also called vesicular GABA transporter (VGAT)]. Immunoblotting analysis revealed that rat brain VIAAT migrated as a doublet during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a predominant slower band in all areas examined except olfactory bulb and retina. The slower band corresponded to a phosphorylated form of VIAAT as it was converted to the faster one by treating brain homogenates with alkaline phosphatase or with an endogenous phosphatase identified as type 2A protein-serine/threonine phosphatase using okadaic acid. In contrast, the recombinant protein expressed in COS-7 or PC12 cells co-migrated with the faster band of the brain doublet and was insensitive to alkaline phosphatase. To investigate the influence of VIAAT phosphorylation on vesicular neurotransmitter loading, purified synaptic vesicles were treated with alkaline phosphatase and assayed for amino acid uptake. However, neither GABA nor glycine uptake was affected by VIAAT phosphorylation. These results indicate that VIAAT is constitutively phosphorylated on cytosolic serine or threonine residues in most, but not all, regions of the rat brain. This phosphorylation does not regulate the vesicular loading of GABA or glycine, suggesting that it is involved at other stages of the synaptic vesicle life cycle.  相似文献   

8.
Quantal size is the postsynaptic response to the release of a single synaptic vesicle and is determined in part by the amount of transmitter within that vesicle. At glutamatergic synapses, the vesicular glutamate transporter (VGLUT) fills vesicles with glutamate. While elevated VGLUT expression increases quantal size, the minimum number of transporters required to fill a vesicle is unknown. In Drosophila DVGLUT mutants, reduced transporter levels lead to a dose-dependent reduction in the frequency of spontaneous quantal release with no change in quantal size. Quantal frequency is not limited by vesicle number or impaired exocytosis. This suggests that a single functional unit of transporter is both necessary and sufficient to fill a vesicle to completion and that vesicles without DVGLUT are empty. Consistent with the presence of empty vesicles, at dvglut mutant synapses synaptic vesicles are smaller, suggesting that vesicle filling and/or transporter level is an important determinant of vesicle size.  相似文献   

9.
gamma-Hydroxybutyrate (GHB) is an endogenous metabolite of mammalian brain which is derived from GABA. Much evidence favours its role as an endogenous neuromodulator, synthesized, stored and released at particular synapses expressing specific receptors. One key step for GHB involvement in neurotransmission is its uptake by a specific population of synaptic vesicles. We demonstrate that this specific uptake exists in a crude synaptic vesicle pool obtained from rat brain. The kinetic parameters and the pharmacology of this transport are in favour of an active vesicular uptake system for GHB via the vesicular inhibitory amino acid transporter. This result supports the idea that GABA and GHB accumulate together and are coliberated in some GABAergic synapses of the rat brain, where GHB acts as a modulatory factor for the activity of these synapses following stimulation of specific receptors.  相似文献   

10.
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.  相似文献   

11.
The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.  相似文献   

12.
Glutamate, GABA and glycine, the major neurotransmitters in CNS, are taken up and stored in synaptic vesicles by a Mg2+-ATP dependent process. The main driving force for vesicular glutamate uptake is the membrane potential, whereas both the membrane potential and the proton gradient contribute to the uptake of GABA and glycine. Glutamate is taken up by a specific transporter with no affinity for aspartate. Evans blue and related dyes are competitive inhibitors of the uptake of glutamate. GABA, β-alanine, and glycine are taken up by the same family of transporter molecules. Aspartate, taurine, and proline are not taken up by any synaptic vesicle preparations. It is suggested that vesicular uptake and release are characteristics that identify these amino acids as neurotransmitters. We also discuss that “quanta” in the brain are not necessarily related the content of neurotransmitter in the synaptic vesicles, but rather to postsynaptic events. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

13.
The vesicular acetylcholine transporter (VAChT) and the vesicular monoamine transporter (VMAT) belong to the same transporter family that packages acetylcholine into synaptic vesicles (SVs) and biogenic amines into large dense core vesicles (LDCVs) and/or SVs, respectively. These transporters share similarities in sequence and structure with their N- and C-terminal domains located in the cytoplasm. When expressed in PC12 cells, VMAT2 localizes to LDCV, whereas VAChT is found mainly on synaptic-like microvesicles. Previous studies have shown that the cytoplasmic C-terminal domain of VAChT contains signals targeting this transporter to SVs. However, the targeting signals for VMAT have not been completely elucidated. To identify signals targeting VMAT2 to LDCV, the subcellular localization of VMAT2-VAChT chimeras was analyzed in PC12 cells. Chimeras having either the N-terminal region through transmembrane domain 2 of VMAT2 or the C-terminal domain of VMAT2 do not traffic to LDCV efficiently. In contrast, chimeras having both of these regions, or the luminal glycosylated loop in conjunction with transmembrane domains 1 and 2 and the C-terminal domain of VMAT2, traffic to LDCV. Treatment of PC12 cells with 1-deoxymannojirimycin, a specific alpha-mannosidase I inhibitor, causes VMAT2 to localize to synaptic-like microvesicles. The results indicate that both mature N-linked glycosylation and the C-terminus are important for proper trafficking of VMAT2 and that the locations of trafficking signals in VMAT2 and VAChT are surprisingly different.  相似文献   

14.
In nerve terminals, vesicular transporters pack neurotransmitters into synaptic vesicles, which is an essential prerequisite for transmitter release. To date, three distinct families of vesicular transporters have been identified which are specific for (a) excitatory amino acids (glutamate and aspartate), (b) inhibitory amino acids (GABA and glycine) and (c) acetylcholine and monoamines. The present study evaluated the effect of transient focal cerebral ischemia on the expression of these vesicular transporters in adult rat brain. Ischemia was induced by a 1 h transient middle cerebral artery occlusion (MCAO) in spontaneously hypertensive rats. At various reperfusion periods (3-72 h), mRNA levels of the vesicular transporters were estimated in the contralateral and the ipsilateral cerebral cortex by real-time PCR analysis. Following transient focal ischemia, mRNA expression of the vesicular GABA transporter (VGAT) decreased significantly by 3 h of reperfusion and remained at a significantly lower level than sham until at least 72 h of reperfusion. Western blotting showed a significant decrease in the VGAT immunoreactive protein levels in the ipsilateral cortex of rats subjected to focal ischemia and 24 h reperfusion. Immunohistochemistry demonstrated many VGAT immunopositive puncta in the contralateral cortex, which were significantly decreased in the ipsilateral cortex at 24 h reperfusion. Focal ischemia had no effect on the mRNA levels of the vesicular transporters specific for glutamate/aspartate, acetylcholine and monoamines at either 6 h or 24 h of reperfusion.  相似文献   

15.
Vesicular transporters are required for the storage of?all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning.  相似文献   

16.
Synaptic vesicles in the nerve terminal play a pivotal role in neurotransmission. Neurotransmitter accumulation into synaptic vesicles is catalyzed by distinct vesicular transporters, harnessing an electrochemical proton gradient generated by V-type proton-pump ATPase. However, little is known about regulation of the transmitter pool size, particularly in regard to amino acid neurotransmitters. We previously provided evidence for the existence of a potent endogenous inhibitory protein factor (IPF), which causes reduction of glutamate and GABA accumulation into isolated, purified synaptic vesicles. In this study we demonstrate that IPF is concentrated most in the synaptosomal cytosol fraction and that, when introduced into the synaptosome, it leads to a decrease in calcium-dependent exocytotic (but not calcium-independent) release of glutamate in a concentration-dependent manner. In contrast, alpha-fodrin (non-erythroid spectrin), which is structurally related to IPF and thought to serve as the precursor for IPF, is devoid of such inhibitory activity. Intrasynaptosomal IPF also caused reduction in exocytotic release of GABA and the monoamine neurotransmitter serotonin. Whether IPF affects vesicular storage of multiple neurotransmitters in vivo would depend upon the localization of IPF. These results raise the possibility that IPF may modulate synaptic transmission by acting as a quantal size regulator of one or more neurotransmitters.  相似文献   

17.
Neurotransmission depends on the regulated release of chemical transmitter molecules. This requires the packaging of these substances into the specialized secretory vesicles of neurons and neuroendocrine cells, a process mediated by specific vesicular transporters. The family of genes encoding the vesicular transporters for biogenic amines and acetylcholine have recently been cloned. Direct comparison of their transport characteristics and pharmacology provides information about vesicular transport bioenergetics, substrate feature recognition by each transporter, and the role of vesicular amine storage in the mechanism of action of psychopharmacologic and neurotoxic agents. Regulation of vesicular transport activity may affect levels of neurotransmitter available for neurosecretion and be an important site for the regulation of synaptic function. Gene knockout studies have determined vesicular transport function is critical for survival and have enabled further evaluation of the role of vesicular neurotransmitter transporters in behavior and neurotoxicity. Molecular analysis is beginning to reveal the sites involved in vesicular transporter function and the sites that determine substrate specificity. In addition, the molecular basis for the selective targeting of these transporters to specific vesicle populations and the biogenesis of monoaminergic and cholinergic synaptic vesicles are areas of research that are currently being explored. This information provides new insights into the pharmacology and physiology of biogenic amine and acetylcholine vesicular storage in cardiovascular, endocrine, and central nervous system function and has important implications for neurodegenerative disease.  相似文献   

18.
Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Go2 and Gq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.  相似文献   

19.
Glutamate and GABA mediate most of the excitatory and inhibitory synaptic transmission; they are taken up and accumulated in synaptic vesicles by specific vesicular transporters named VGLUT1-3 and VGAT, respectively. Recent studies show that VGLUT2 and VGLUT3 are co-expressed with VGAT. Because of the relevance this information has for our understanding of synaptic physiology and plasticity, we investigated whether VGLUT1 and VGAT are co-expressed in rat cortical neurons. In cortical cultures and layer V cortical terminals we observed a population of terminals expressing VGLUT1 and VGAT. Post-embedding immunogold studies showed that VGLUT1+/VGAT+ terminals formed both symmetric and asymmetric synapses. Triple-labeling studies revealed GABAergic synapses expressing VGLUT1 and glutamatergic synapses expressing VGAT. Immunoisolation studies showed that anti-VGAT immunoisolated vesicles contained VGLUT1 and anti-VGLUT1 immunoisolated vesicles contained VGAT. Finally, vesicles containing VGAT resident in glutamatergic terminals undergo active recycling. In conclusion, we demonstrate that in neocortex VGLUT1 and VGAT are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, that VGLUT1 and VGAT are sorted to the same vesicles and that vesicles at synapses expressing the vesicular heterotransporter participate in the exo-endocytotic cycle.  相似文献   

20.
Krantz DE 《Neuron》2006,49(1):1-2
Vesicular neurotransmitter transporters package transmitter into the lumen of synaptic vesicles for quantal release. However, the number of transporters that localize to each vesicle is not known. In this issue of Neuron, a study by Daniels et al. using the Drosophila neuromuscular junction and mutations of the vesicular glutamate transporter suggests that one transporter may suffice to fill each vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号