首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Neurological and structural changes are paralleled by cognitive deficits in diabetes mellitus. The present study was designed to evaluate the expression of neural cell adhesion molecules (NCAM) in the hippocampus, cortex and cerebellum and to examine cognitive functions in diabetic rats. Diabetes was induced in male albino rats via intraperitoneal streptozotocin injection. Learning and memory behaviors were investigated using a passive avoidance test and a spatial version of the Morris water maze test. NCAM expression was detected in the hippocampus, cortex and cerebellum by an immunoblotting method. The diabetic rats developed significant impairment in learning and memory behaviours as indicated by deficits in passive avoidance and water maze tests as compared to control rats. Expression of NCAM 180 and 120 kDa were found to be higher in hippocampus and cortex of diabetic rat brains compared to those of control, whereas expression of NCAM 140 kDa decreased in these brain regions. Our findings suggest that streptozotocin-induced diabetes impairs cognitive functions and causes an imbalance in expression of NCAM in those brain regions involved in learning and memory. Altered expression of NCAM in hippocampus may be an important cause of learning and memory deficits that occur in diabetes mellitus.  相似文献   

2.
Increased activity of D2 receptors (D2Rs) in the striatum has been linked to the pathophysiology of schizophrenia. To determine directly the behavioral and physiological consequences of increased D2R function in the striatum, we generated mice with reversibly increased levels of D2Rs restricted to the striatum. D2 transgenic mice exhibit selective cognitive impairments in working memory tasks and behavioral flexibility without more general cognitive deficits. The deficit in the working memory task persists even after the transgene has been switched off, indicating that it results not from continued overexpression of D2Rs but from excess expression during development. To determine the effects that may mediate the observed cognitive deficits, we analyzed the prefrontal cortex, the brain structure mainly associated with working memory. We found that D2R overexpression in the striatum impacts dopamine levels, rates of dopamine turnover, and activation of D1 receptors in the prefrontal cortex, measures that are critical for working memory.  相似文献   

3.
α2肾上腺素受体与前额叶皮层认知功能   总被引:2,自引:0,他引:2  
灵长类动物上的一系列研究表明,去甲肾上腺素通过作用于前额叶皮层突触后α2A受体增强前额叶皮层的认知功能,如注意力调节,工作记忆及反应抑制等。这些基础性的研究结果有助于开发新的药物治疗方法,用于治疗前额叶皮层认知功能障碍(如注意力缺损多动症)。  相似文献   

4.
Aluminum is associated with etiology of many neurodegenerative diseases specially Alzheimer’s disease. Chronic exposure to aluminum via drinking water results in aluminum deposition in the brain that leads to cognitive deficits. The study aimed to determine the effects of aluminum on cholinergic biomarkers, i.e., acetylcholine level, free choline level, and choline acetyltransferase gene expression, and how cholinergic deficit affects novel object recognition and sociability in mice. Mice were treated with AlCl3 (250 mg/kg). Acetylcholine level, free choline level, and choline acetyltransferase gene expression were determined in cortex, hippocampus, and amygdala. The mice were subjected to behavior tests (novel object recognition and social novelty preference) to assess memory deficits. The acetylcholine level in cortex and hippocampus was significantly reduced in aluminum-treated animals, as compared to cortex and hippocampus of control animals. Acetylcholine level in amygdala of aluminum-treated animals remained unchanged. Free choline level in all the three brain parts was found unaltered in aluminum-treated mice. The novel object recognition memory was severely impaired in aluminum-treated mice, as compared to the control group. Similarly, animals treated with aluminum showed reduced sociability compared to the control mice group. Our study demonstrates that aluminum exposure via drinking water causes reduced acetylcholine synthesis in spite of normal free choline availability. This deficit is caused by reduced recycling of acetylcholine due to lower choline acetyltransferase level. This cholinergic hypofunction leads to cognitive and memory deficits. Moreover, hippocampus is the most affected brain part after aluminum intoxication.  相似文献   

5.
Epigenetic mechanisms are crucial to regulate the expression of different genes required for neuronal plasticity. Neurotoxic substances such as arsenic, which induces cognitive deficits in exposed children before any other manifestation of toxicity, could interfere with the epigenetic modulation of neuronal gene expression required for learning and memory. This study assessed in Wistar rats the effects that developmental arsenic exposure had on DNA methylation patterns in hippocampus and frontal cortex. Animals were exposed to arsenic in drinking water (3 and 36ppm) from gestation until 4 months of age, and DNA methylation in brain cells was determined by flow cytometry, immunohistochemistry and methylation-specific polymerase chain reaction (PCR) of the promoter regions of reelin (RELN) and protein phosphatase 1 (PP1) at 1, 2, 3 and 4 months of age. Immunoreactivity to 5 methyl-cytosine was significantly higher in the cortex and hippocampus of exposed animals compared to controls at 1 month, and DNA hypomethylation was observed the following months in the cortex at high arsenic exposure. Furthermore, we observed a significant increase in the non-methylated form of PP1 gene promoter at 2 and 3 months of age, either in cortex or hippocampus. In order to determine whether this exposure level is associated with memory deficits, a behavioral test was performed at the same age points, revealing progressive and dose-dependent deficits of fear memory. Our results demonstrate alterations of the methylation pattern of genes involved in neuronal plasticity in an animal model of memory deficit associated with arsenic exposure.  相似文献   

6.
Behavioral pharmacological studies have implicated a role for the neurophysin arginine-vasopressin in learning and memory. Vasopressin, and its analogues, can produce either improvements or impairments in mnemonic functions, effects that depend upon the agent administered, the memory process measured and the task employed. As recent data have implicated vasopressin in regulating the cognitive functions of the prefrontal cortex, we sought to determine whether changes in vasopressinergic tone would affect a form of memory that is dependent upon this brain region. To that end, we used a genetic approach to examine how haploinsufficiency of the vasopressin gene affects working memory performance. Specifically, we tested a naturally occurring null-mutant rat on an operant delayed-non-match-to-position task. Male and female heterozygous and wild-type rats were trained to perform this working memory task, and the effects of varying the delay across which they had to maintain task information were systematically varied. Although vasopressin-deficient rats omitted fewer trials and completed trials more quickly, they exhibited delay-dependent deficits of choice accuracy. The genotype effects were not modified by sex. Collectively, these data indicate that even partial vasopressin deficiency can trigger deficits of spatial working memory performance and add to the growing body of results supporting a regulatory control of neocortical-dependent cognitive functions by this neurohormone.  相似文献   

7.
We have developed a presenilin-1 (PS1) conditional knockout mouse (cKO), in which PS1 inactivation is restricted to the postnatal forebrain. The PS1 cKO mouse is viable and exhibits no gross abnormalities. The carboxy-terminal fragments of the amyloid precursor protein differentially accumulate in the cerebral cortex of cKO mice, while generation of beta-amyloid peptides is reduced. Expression of Notch downstream effector genes, Hes1, Hes5, and Dll1, is unaffected in the cKO cortex. Although basal synaptic transmission, long-term potentiation, and long-term depression at hippocampal area CA1 synapses are normal, the PS1 cKO mice exhibit subtle but significant deficits in long-term spatial memory. These results demonstrate that inactivation of PS1 function in the adult cerebral cortex leads to reduced Abeta generation and subtle cognitive deficits without affecting expression of Notch downstream genes.  相似文献   

8.
Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.  相似文献   

9.
Patients with Huntington''s disease (HD) are often described as unaware of their motor symptoms, their behavioral disorders or their cognitive deficits, including memory. Nevertheless, because patients with Parkinson''s disease (PD) remain aware of their memory deficits despite striatal dysfunction, we hypothesize that early stage HD patients in whom degeneration predominates in the striatum can accurately judge their own memory disorders whereas more advanced patients cannot. In order to test our hypothesis, we compared subjective questionnaires of memory deficits (in HD patients and in their proxies) and objective measures of memory dysfunction in patients. Forty-six patients with manifest HD attending the out-patient department of the French National Reference Center for HD and thirty-three proxies were enrolled. We found that HD patients at an early stage of the disease (Stage 1) were more accurate than their proxies at evaluating their own memory deficits, independently from their depression level. The proxies were more influenced by patients'' functional decline rather than by patients'' memory deficits. Patients with moderate disease (Stage 2) misestimated their memory deficits compared to their proxies, whose judgment was nonetheless influenced by the severity of both functional decline and depression. Contrasting subjective memory ratings from the patients and their objective memory performance, we demonstrate that although HD patients are often reported to be unaware of their neurological, cognitive and behavioral symptoms, it is not the case for memory deficits at an early stage. Loss of awareness of memory deficits in HD is associated with the severity of the disease in terms of CAG repeats, functional decline, motor dysfunction and cognitive impairment, including memory deficits and executive dysfunction.  相似文献   

10.
Wang  Xiaona  Li  Peng  Liu  Jingsheng  Jin  Xunbo  Li  Lianjun  Zhang  Dong  Sun  Peng 《Neurochemical research》2016,41(6):1401-1409

3,3′-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce persistent neurotoxicity, and therefore cause dyskinesia and cognitive impairments. Gastrodin, a main bioactive ingredient of Gastrodia elata Blume, is shown to greatly improve cognitive function. The aim of this study was to further determine whether administration of gastrodin can ameliorate IDPN-induced cognitive deficits in the Morris water maze (MWM) and novel object recognition (NOR) task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (100 mg/kg/day, for 8 days) significantly impaired spatial and object recognition memory and that repeated treatment with gastrodin (150 mg/kg/day, for 6 weeks) could effectively alleviate the IDPN-induced cognitive impairments as indicated by increased spatial memory and discrimination ratio in the MWM and NOR tests. Gastrodin treatment also reverted IDPN-induced decreases of γ-aminobutyric acid (GABA) levels and increases of a2 GABAA receptor protein expression in the prefrontal cortex and hippocampus of IDPN-treated rats. These results suggest that gastrodin treatment may provide a novel pharmacological strategy for IDPN-induced cognitive deficits, which was mediated, at least in part, by normalizing the GABAergic system.

  相似文献   

11.
The neurotoxic effects of thinner, a mixture including aromatic compounds (in particular, toluene) and widely used as an industrial solvent, were examined. Exposure of rats to high inhalation concentrations (3000 p.p.m.) of thinner for 45 days (1 h per day) significantly influenced the cognitive functions and levels of neural cell adhesion molecules (NCAM) in the hippocampus, cortex, and cerebellum of experimental animals. These exposures also caused dramatic increases in levels of LPO (malondialdehyde and 4-hydroxyalkenals) in these cerebral structures, while melatonin administration significantly reduced the LPO amounts in these brain regions. The level of NCAM (180 kDa) decreased significantly in the hippocampus and cortex of thinner-exposed rats. Furthermore, thinner-exposed rats showed cognitive deficits in the passive avoidance and Morris water maze tasks; these negative effects were considerably compensated in rats additionally chronically treated with melatonin. It is concluded that treatment with melatonin prevents the development of learning and memory deficits caused by thinner exposure, possibly by reducing oxidative stress and normalizing the neural plasticity.  相似文献   

12.
13.
Voytek B  Davis M  Yago E  Barceló F  Vogel EK  Knight RT 《Neuron》2010,68(3):401-408
Memory and attention deficits are common after prefrontal cortex (PFC) damage, yet people generally recover some function over time. Recovery is thought to be dependent upon undamaged brain regions, but the temporal dynamics underlying cognitive recovery are poorly understood. Here, we provide evidence that the intact PFC compensates for damage in the lesioned PFC on a trial-by-trial basis dependent on cognitive load. The extent of this rapid functional compensation is indexed by transient increases in electrophysiological measures of attention and memory in the intact PFC, detectable within a second after stimulus presentation and only when the lesioned hemisphere is challenged. These observations provide evidence supporting a dynamic and flexible model of compensatory neural plasticity.  相似文献   

14.
The present study was designed to evaluate the learning and memory, in an altered physiological state associated with increased blood pressure and activated renin angiotensin system in Wistar rats. The role of angiotensin in cognitive function was assessed by treatment with angiotensin converting enzyme (ACE) inhibitor enalapril (2 mg/kg), angiotensin 1 receptor (AT(1)) antagonist losartan (5 mg/kg) and their combination. The experimental renal hypertension was induced by the method of Goldblatt. Learning and memory was assessed using the radial arm maze test. Acetylcholine esterase (AChE) levels in the pons medulla, hippocampus, striatum and frontal cortex were measured as a cholinergic marker of learning and memory. Results indicate that in comparison to normotensive rats, renal hypertensive rats committed significantly higher number of errors and took more trials and days to learn the radial arm maze learning and exhibited memory deficit in the radial arm maze retrieval after two weeks of retention interval, indicating impaired acquisition and memory. Treatment with enalapril, losartan and their combination attenuated the observed memory deficits indicating a possible role of renin angiotensin system in cognitive function. AChE level was reduced in hippocampus and frontal cortex of renal hypertensive rats which could be attributed to the observed memory deficit in hypertensive rats. It can be concluded that, renal hypertensive rats had a poor acquisition, retrieval of the learned behavior, perhaps a possible disturbance in memory consolidation process and that this state was reversed with ACE inhibitor enalapril and AT 1 receptor antagonist losartan.  相似文献   

15.
The entorhinal cortex (EC) is one of the earliest affected, most vulnerable brain regions in Alzheimer's disease (AD), which is associated with amyloid-β (Aβ) accumulation in many brain areas. Selective overexpression of mutant amyloid precursor protein (APP) predominantly in layer II/III neurons of the EC caused cognitive and behavioral abnormalities characteristic of mouse models with widespread neuronal APP overexpression, including hyperactivity, disinhibition, and spatial learning and memory deficits. APP/Aβ overexpression in the EC elicited abnormalities in synaptic functions and activity-related molecules in the dentate gyrus and CA1 and epileptiform activity in parietal cortex. Soluble Aβ was observed in the dentate gyrus, and Aβ deposits in the hippocampus were localized to perforant pathway terminal fields. Thus, APP/Aβ expression in EC neurons causes transsynaptic deficits that could initiate the cortical-hippocampal network dysfunction in mouse models and human patients with AD.  相似文献   

16.
Iodine is essential for the synthesis of triiodothyronine (T3) and thyroxine (T4). Iodine deficiency leads to inadequate thyroid hormone. Hypothyroidism induced by iodine deficiency during gestation and postnatal period leads to cognitive deficits in learning and memory. However, the mechanism underlying these deficits is unclear. Calcium-dependent calmodulin kinase II (CaMKII) known as a potential memory molecule regulates important neuronal functions including learning and memory. Recent studies have shown that hypothyroidism alters phosphorylation of CaMKII in hippocampus or even in sympathetic ganglia of rats. Though the entorhinal cortex (EC) is an important functional structure within the neuronal network responsible for learning and memory, little is known about the effect of hypothyroidism on phosphorylation of CaMKII in the EC. Here, we report that iodine deficiency and propylthiouracil treatment through gestation and lactation reduce phosphorylation of CaMKII in the EC of pups. The increase of calcineurin, as well as reduction of neurogranin and calmodulin, may account for the reduced phosphorylation of CaMKII induced by developmental iodine deficiency and hypothyroidism. These findings in the EC may contribute to understanding the mechanisms that underlie impairment of learning and memory induced by developmental iodine deficiency and hypothyroidism.  相似文献   

17.
1. In this article we review the studies of memory disabilities in a rat model o Parkinson's disease (PD).2. Intranigral administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to rats causes a partial lesion in the substantia nigra, compact part (SNc) and a specific loss of dopamine and its metabolites in the striatum of rats.3. These animals present learning and memory deficits but no sensorimotor impairments, thus modeling the early phase of PD when cognitive impairments are observed but the motor symptoms of the disease are barely present.4. The cognitive deficits observed in these animals affect memory tasks proposed to model habit learning (the cued version of the water maze task and the two-way active avoidance task) and working memory (a working memory version of the water maze), but spare long-term spatial memory (the spatial reference version of the Morris water maze).5. The treatment of these animals with levodopa in a dose that restores the striatal level of dopamine does not reverse these memory impairments, probably because this treatment promotes a high level of dopamine in extrastriatal brain regions, such as the prefrontal cortex and the hippocampus.6. On the other hand, the adenosine receptor antagonist, caffeine, partly reverse the memory impairment effect of SNc lesion in these rats. This effect may be due to caffeine action on nigrostriatal neurons, since it induces dopamine release and modulates the interaction between adenosine and dopamine receptor activity.7. These results suggest that the MPTP SNc-lesioned rats are a good model to study memory disabilities related to PD and that caffeine and other selective A(2A) adenosine receptor antagonists are promising drugs to treat this symptoms in PD patients.  相似文献   

18.
Cerebrovascular dysfunction and cognitive decline are highly prevalent in aging, but the mechanisms underlying these impairments are unclear. Cerebral blood flow decreases with aging and is one of the earliest events in the pathogenesis of Alzheimer's disease (AD). We have previously shown that the mechanistic/mammalian target of rapamycin (mTOR) drives disease progression in mouse models of AD and in models of cognitive impairment associated with atherosclerosis, closely recapitulating vascular cognitive impairment. In the present studies, we sought to determine whether mTOR plays a role in cerebrovascular dysfunction and cognitive decline during normative aging in rats. Using behavioral tools and MRI‐based functional imaging, together with biochemical and immunohistochemical approaches, we demonstrate that chronic mTOR attenuation with rapamycin ameliorates deficits in learning and memory, prevents neurovascular uncoupling, and restores cerebral perfusion in aged rats. Additionally, morphometric and biochemical analyses of hippocampus and cortex revealed that mTOR drives age‐related declines in synaptic and vascular density during aging. These data indicate that in addition to mediating AD‐like cognitive and cerebrovascular deficits in models of AD and atherosclerosis, mTOR drives cerebrovascular, neuronal, and cognitive deficits associated with normative aging. Thus, inhibitors of mTOR may have potential to treat age‐related cerebrovascular dysfunction and cognitive decline. Since treatment of age‐related cerebrovascular dysfunction in older adults is expected to prevent further deterioration of cerebral perfusion, recently identified as a biomarker for the very early (preclinical) stages of AD, mTOR attenuation may potentially block the initiation and progression of AD.  相似文献   

19.
Successful memory encoding depends on the ability to intentionally encode relevant information (via differential encoding) and intentionally forget that which is irrelevant (via inhibition). Both cognitive processes have been shown to decline in aging and are theorized to underlie age-related deficits in the cognitive control of memory. The current study uses the Directed Forgetting paradigm in conjunction with fMRI to investigate age-related differences in both cognitive processes, with the specific aim of elucidating neural evidence supporting these theorized deficits. Results indicate relatively preserved differential encoding, with age differences consistent with previous models of age-related compensation (i.e., increased frontal and bilateral recruitment). Older adults did display noticeable differences in the recruitment of brain regions related to intentional forgetting, specifically exhibiting reduced activity in the right superior prefrontal cortex, a region shown to be critical to inhibitory processing. However, older adults exhibited increased reliance on processing in right inferior parietal lobe associated with successful forgetting. Activity in this region was negatively correlated with activity in the medial temporal lobe, suggesting a shift in the locus of inhibition compared to the frontally mediated inhibition observed in younger adults. Finally, while previous studies found intentional and incidental forgetting to be dissociable in younger adults, this differentiation appears to be reduced in older adults. The current results are the first to provide neural evidence for an age-related reduction in processes that support intentional forgetting.  相似文献   

20.
Progressive memory loss and cognitive dysfunction are the hallmark clinical features of Alzheimer's disease (AD). Identifying the molecular triggers for the onset of AD-related cognitive decline presently requires the use of suitable animal models, such as the 3xTg-AD mice, which develop both amyloid and tangle pathology. Here, we characterize the onset of learning and memory deficits in this model. We report that 2-month-old, prepathologic mice are cognitively unimpaired. The earliest cognitive impairment manifests at 4 months as a deficit in long-term retention and correlates with the accumulation of intraneuronal Abeta in the hippocampus and amygdala. Plaque or tangle pathology is not apparent at this age, suggesting that they contribute to cognitive dysfunction at later time points. Clearance of the intraneuronal Abeta pathology by immunotherapy rescues the early cognitive deficits on a hippocampal-dependent task. Reemergence of the Abeta pathology again leads to cognitive deficits. This study strongly implicates intraneuronal Abeta in the onset of cognitive dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号